【題目】問題背景:某數(shù)學興趣小組把兩個等腰直角三角形的直角頂點重合,發(fā)現(xiàn)了一些有趣的結論.

結論一:

1)如圖1,在ABC、ADE中,∠BAC=∠DAE90°,ABAC,ADAE,連接BD,CE,試說明ADB≌△AEC;

結論二:

2)如圖2,在(1)的條件下,若點EBC邊上,試說明DBBC;

應用:

3)如圖3,在四邊形ABCD中,∠ABC=∠ADC90°ABCB,∠BAD+BCD180°,連接BDBD7cm,求四邊形ABCD的面積.

【答案】1)見解析;(2)見解析;(3S四邊形ABCD24.5cm2).

【解析】

1)根據(jù)全等三角形的判定SAS進行證明即可得到答案;

2)根據(jù)全等三角形的性質和三角形內角和定理進行計算,即可得到答案;

3)作BEBD,交DC的延長線于點E,根據(jù)三角形內角和和全等三角形的判定定理(ASA),即可得到答案.

1)∵∠BAC=∠DAE90°,

∴∠BAE+CAE=∠BAE+BAD

∴∠CAE=∠BAD,

又∵ABAC,ADAE,

∴△ADB≌△AECSAS);

2)由(1)得ADB≌△AEC,

∴∠C=∠ABD

又∵∠ABC+C90°,

∴∠ABC+ABD90°

DBBC;

3)作BEBD,交DC的延長線于點E,

BEBD,

∴∠CBE+DBC90°,

又∵∠ABD+DBC90°,

∴∠ABD=∠EBC

∵∠BAD+BCD180°,

BCE+BCD180°,

∴∠BAD=∠BCE,

又∵BABC,

∴△BAD≌△BCEASA),

BDBE,且SBADSBCE,

S四邊形ABCDSABD+SDBC

SBCE+SBCD

SBDE

×7×724.5cm2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABO的直徑,ACO交于點D,點E上,連接DE,AE,連接CE并延長交AB于點F,AED=ACF

1)求證:CF⊥AB

2)若CD=4,CB=4cosACF=,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填寫推理理由,將過程補充完整:

如圖,,.求證:.

證明:∵(已知),

_________________________________________.

(已知),

_________(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行).

__________=_________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為提高市民的環(huán)保意識,倡導節(jié)能減排,綠色出行,某市計劃在城區(qū)投放一批共享單車,這批單車分為A、B兩種不同款型,其中A型車單價400元,B型車單價320元.

(1)今年年初,共享單車試點投放在某市中心城區(qū)正式啟動,投放A、B兩種款型的單車共100輛,總價值36800元.求本次試點投放的A型車、B型車的輛數(shù).

(2)試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區(qū)全面鋪開.按照試點投放中A、B兩車型的數(shù)量比進行投放,且投資總價值不低于184萬元.問整個城區(qū)全面鋪開時投放的A型車、B型車至少多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:己知:對于實數(shù)a≥0,b≥0,滿足a+b≥2,當且僅當a = b時,等號成立,此時取得代數(shù)式a+b的最小值.

根據(jù)以上結論,解決以下問題:

(1)拓展:若a>0,當且僅當a=___時,a+有最小值,最小值為____;

(2)應用:

如圖1,已知點P為雙曲線y=(x>0)上的任意一點,過點PPA⊥x軸,PBy軸,四邊形OAPB的周長取得最小值時,求出點P的坐標以及周長最小值:

如圖2,已知點Q是雙曲線y=(x>0)上一點,且PQ∥x軸, 連接OPOQ,當線段OP取得最小值時,在平面內取一點C,使得以0、PQ、C為頂點的四邊形是平行四邊形,求出點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系中,點 A 2,2)、B0,1)點 P x 軸上,且PAB 的等腰三角形,則滿足條件的點 P 共有()個

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線ABCD相交于點O,OEOC,OF平分∠AOE.

1)若,則∠AOF的度數(shù)為______;

2)若,求∠BOC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆時針旋轉一定角度后與△ADE重合,且點C恰好成為AD中點,如圖

(1)指出旋轉中心,并求出旋轉角的度數(shù).

(2)求出∠BAE的度數(shù)和AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知AB是圓O的直徑,圓O過BC的中點D,且DEAC.

(1)求證:DE是圓O的切線;

(2)若C=30°,CD=10cm,求圓O的半徑.

查看答案和解析>>

同步練習冊答案