【題目】如圖,已知點(diǎn)A是反比例函數(shù)y的圖象在第一象限上的動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為邊作等邊ABC使點(diǎn)C落在第二象限,且邊BCx軸于點(diǎn)D,若ACDABD的面積之比為12,則點(diǎn)C的坐標(biāo)為__

【答案】(﹣6).

【解析】

CMODM,AEODE,作DFABF,連接CO,根據(jù)等高的三角形的面積比等于底邊的比,可得DB=2CD,由ABC是等邊三角形,且AO=BO可得COABCO=AO=BO,由DFCO可得OF=OB,DF=OB,根據(jù)AOE∽△DOF 可得AE=2OE,根據(jù)AE×OE=2,可求A點(diǎn)坐標(biāo),再根據(jù)CMO∽△AOE 可求C點(diǎn)坐標(biāo).

如圖,作CMODMAEODE,作DFABF,連接CO,

根據(jù)題意得:AO=BO

SACDSADB=12

CDDB=12DB=2CD

∵△ABC為等邊三角形且AO=BO

∴∠CBA=60°,COABDFAB

DFCO

DF=CO,BF=BO,即FO=BO

∵∠CBA=60°COAB

CO=BO,

DF=BO

∵∠DOF=AOE,∠DFO=AEO=90°

∴△DFO∽△AOE

,

AE=2OE

∵點(diǎn)A是反比例函數(shù)y=的圖象在第一象限上的動(dòng)點(diǎn)

AE×OE=2,

AE=2OE=1

∵∠COM+AOE=90°,∠AOE+EAO=90°

∴∠COM=EAO,且∠CMO=AEO=90°

∴△COM∽△AOE

,

CM=,MO=6

M在第二象限

C-6,

故答案為:(-6).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=-xb與反比例函數(shù)yx0)的圖象交于點(diǎn)A26)和點(diǎn)Bm1

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)點(diǎn)Ey軸上一個(gè)動(dòng)點(diǎn),若SAEB5,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+ca≠0)的對(duì)稱(chēng)軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①4ac﹣b20;2a﹣b=0;a+b+c0;④點(diǎn)Mx1y1)、Nx2,y2)在拋物線上,若x1x2﹣1,則y1y2abc0.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,AB=AC,AB是⊙O的直徑,⊙OBC于點(diǎn)D,DEAC于點(diǎn)EBE交⊙O于點(diǎn)F,連接AFAF的延長(zhǎng)線交DE于點(diǎn)P

1)求證:DE是⊙O的切線;

2)求tanABE的值;

3)若OA=2,求線段AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】14分)如圖,已知拋物線)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,且OC=OB.

(1)求此拋物線的解析式;

(2)若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE,CE,求四邊形BOCE面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);

(3)點(diǎn)P在拋物線的對(duì)稱(chēng)軸上,若線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好也落在此拋物線上,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,過(guò)點(diǎn)B的直線與對(duì)角線AC、邊AD分別交于點(diǎn)EF.過(guò)點(diǎn)EEG∥BC,交ABG,則圖中相似三角形有( )

A. 4對(duì)B. 5對(duì)C. 6對(duì)D. 7對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知ABC中,AB5,BC3,AC4,PQAB,P點(diǎn)在AC上(與A、C不重合),QBC上.

1)當(dāng)PQC的面積與四邊形PABQ的面積相等時(shí),求CP的長(zhǎng);

2)當(dāng)PQC的周長(zhǎng)與四邊形PABQ的周長(zhǎng)相等時(shí),求CP的長(zhǎng);

3)試問(wèn):在AB上是否存在一點(diǎn)M,使得PQM為等腰直角三角形?若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由;若存在,請(qǐng)求出PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AD平分∠BACBC于點(diǎn)D.點(diǎn)E、F分別在邊ABAC上,且BEAF,FGAB交線段AD于點(diǎn)G,連接BG、EF

1)求證:四邊形BGFE是平行四邊形;

2)若ABG∽△AGF,AB10AG6,求線段BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案