【題目】在一條不完整的數(shù)軸上從左到右有點,其中點到點的距離為3,點到點的距離為7,如圖所示:設點所對應的數(shù)的和是.
(1)若以為原點,則的值是 .
(2)若原點在圖中數(shù)軸上,且點到原點的距離為4,求的值.
(3)動點從點出發(fā),以每秒2個單位長度的速度向終點移動,動點同時從點出發(fā),以每秒1個單位的速度向終點移動,當幾秒后,兩點間的距離為2?(直接寫出答案即可)
【答案】(1)-17;(2)m=-5或-29;(3)1秒或5秒.
【解析】
(1)根據(jù)已知點A到點B的距離為3和點C到點B的距離為7求出即可;
(2)分為兩種情況,當O在C的左邊時,當O在C的右邊時,求出每種情況A、B、C對應的數(shù),即可求出m;
(3)分為兩種情況,當P在Q的左邊時,當P在Q的左邊時,假如C為原點,求出P、Q對應的數(shù),列出算式,即可求出t.
(1)當以C為原點時,A、B對應的數(shù)分別為-10,-7,
則m=-10+(-7)+0=-17,
故答案為:-17;
(2)當O在C的左邊時,A、B、C三點在數(shù)軸上所對應的數(shù)分別為-6、-3、4,
則 m=-6-3+4=-5,
當O在C的右邊時,A、B、C三點在數(shù)軸上所對應的數(shù)分別為-14、-11、-4,
則m=-14-11-4=-29,
綜上所述:m=-5或-29;
(3)假如以C為原點,則A、B、C對應的數(shù)為-10,-7,0,Q對應的數(shù)是-(7-t),P對應的數(shù)是-(10-2t),
當P在Q的左邊時,[-(7-t)]-[-(10-2t)]=2,
解得:t=1
當P在Q的右邊時,[-(10-2t)]-[-(7-t)]=2,
解得:t=5,
即當1秒或5秒后,P、Q兩點間的距離為2.
科目:初中數(shù)學 來源: 題型:
【題目】為了了解2019年北京市乘坐地鐵的每個人的月均花費情況,相關部門隨機調查了1000人乘坐地鐵的月均花費(單位:元),繪制了如下頻數(shù)分布直方圖,根據(jù)圖中信息,下面三個推斷中,合理的是( )
①小明乘坐地鐵的月均花費是75元,那么在所調查的1000人中一定有超過一半的人月均花費超過小明;
②估計平均每人乘坐地鐵的月均花費的不低于60元;
③如果規(guī)定消費達到一定數(shù)額可以享受折扣優(yōu)惠,并且享受折扣優(yōu)惠的人數(shù)控制在20%左右,那么乘坐地鐵的月均花費達到120元的人可享受折扣.
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)y=的圖象上.
(1)求k的值;
(2)若將△BOA繞點B按逆時針方向旋轉60°,得到△BDE,判斷點E是否在該反比例函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某種產品展開圖,高為3cm.
(1)求這個產品的體積.
(2)請為廠家設計一種包裝紙箱,使每箱能裝5件這種產品,要求沒有空隙且要使該紙箱所用材料盡可能少(紙的厚度不計,紙箱的表面積盡可能。蟠碎L方體的表面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系第一象限中有一點B. 要求:用尺規(guī)作圖作一條直線AC,使它與x軸和y軸的正半軸分別交于點A和點C,且使∠ABC=90°,△ABC與△AOC全等.
(1)小明的作法是:過B點分別向x 軸、y 軸作垂線,垂足為A、C,連接A、C,則直線AC即為所求.請你幫助小明在圖中完成作圖(保留作圖痕跡);
圖
(2)請在圖中再畫出另一條滿足條件的直線AC,并說明理由.
圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,點是等邊內一點,,.以為邊作等邊三角形,連接.
(1)求證:;
(2)當時(如圖②),試判斷的形狀,并說明理由;
(3)求當是多少度時,是等腰三角形?(寫出過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料
利用完全平方公式,將多項式x2+bx+c變形為(x+m)2+n的形式,然后由(x+m)2≥0就可求出多項式x2+bx+c的最小值.
例題:求x2-12x+37的最小值.
解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,
因為不論x取何值,(x-6)2總是非負數(shù),即(x-6)2≥0,
所以(x-6)2+1≥1.
所以當x=6時,x2-12x+37有最小值,最小值是1.
根據(jù)上述材料,解答下列問題:
(1)填空:x2-8x+_________=(x-_______)2,
(2)將x2+10x-2變形為(x+m)2+n的形式,并求出x2+10x-2的最小值,
(3)如圖①所示的長方形邊長分別是2a+5、3a+2,面積為S1:如圖②所示的長方形邊長分別是5a、a+5,面積為S2. 試比較S1與S2的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C是線段AB上一點,M是線段AC的中點,N是線段BC的中點.
(1)如果AB=10cm,AM=3cm,求CN的長;
(2)如果MN=6cm,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com