如果,那么下列等式一定成立的是( )
A.a(chǎn)c=bd
B.a(chǎn)d=bc
C.a(chǎn)=c
D.b=d
【答案】分析:根據(jù)比例的意義和基本性質(zhì),逐個驗證,運用排除法求解.
解答:解:A、根據(jù)比例的基本性質(zhì),兩外項之積等于兩內(nèi)項之積,由,得ad=bc,故選項錯誤;
B、正確;
C、如果a=1,b=c=2,d=4,則=,但是1≠2,即a≠c,故選項錯誤;
D、同上,如果a=1,b=c=2,d=4,則=,但是2≠4,即b≠d,故選項錯誤.
故選B.
點評:此題考查了比例的意義和基本性質(zhì),比較簡單.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列等式:4-2=4÷2,
9
2
-3=
9
2
÷3
,(-
1
2
)-
1
2
=(-
1
2
1
2
,…
(1)以上這些等式都有一個共同特征:兩個實數(shù)的
等于這兩個實數(shù)的
;如果等號左邊的第一個實數(shù)用x表示,第二個實數(shù)用y表示,那么這些等式的共同特征可用含x,y的等式表示為
x-y=x÷y
x-y=x÷y

(2)將(1)題等式變形,用含y的代數(shù)式表示為
x=
y2
y-1
x=
y2
y-1
;
(3)請你找出一組滿足上述特征的兩個實數(shù),并寫成等式形式
9
2
-3=
9
2
÷3
9
2
-3=
9
2
÷3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列各等式:
1
2
+(-1)=
1
2
÷(-1),-4+2=(-4)÷2,(-
25
4
)+5=(-
25
4
)÷5,…

(1)以上各等式都有一個共同的特征:某兩個數(shù)字的
等于這兩個數(shù)的
;如果等號左邊的第一個數(shù)用x表示,第二個數(shù)用y表示,那么這些等式的共同特點可用含x,y的等式表示為
x+y=
x
y
x+y=
x
y

(2)請你再找出一組滿足以上特征的兩個有理數(shù),并寫成等式的形式:
(-
9
2
)+3=(-
9
2
)÷3
(-
9
2
)+3=(-
9
2
)÷3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

觀察下列各等式:
1
2
+(-1)=
1
2
÷(-1),-4+2=(-4)÷2,(-
25
4
)+5=(-
25
4
)÷5,…

(1)以上各等式都有一個共同的特征:某兩個數(shù)字的______等于這兩個數(shù)的______;如果等號左邊的第一個數(shù)用x表示,第二個數(shù)用y表示,那么這些等式的共同特點可用含x,y的等式表示為______.
(2)請你再找出一組滿足以上特征的兩個有理數(shù),并寫成等式的形式:______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

觀察下列等式:4-2=4÷2,
9
2
-3=
9
2
÷3
,(-
1
2
)-
1
2
=(-
1
2
1
2
,…
(1)以上這些等式都有一個共同特征:兩個實數(shù)的______等于這兩個實數(shù)的______;如果等號左邊的第一個實數(shù)用x表示,第二個實數(shù)用y表示,那么這些等式的共同特征可用含x,y的等式表示為______.
(2)將(1)題等式變形,用含y的代數(shù)式表示為______;
(3)請你找出一組滿足上述特征的兩個實數(shù),并寫成等式形式______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年上海市盧灣區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2011•盧灣區(qū)一模)如果線段a、b、c、d滿足,那么下列等式不一定成立的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案