【題目】已知反比例函數(shù) 的圖象經(jīng)過點(diǎn) ,若一次函數(shù)y=x+1的圖象平移后經(jīng)過該反比例函數(shù)圖象上的點(diǎn)B(2,m),求平移后的一次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo).

【答案】解:由于反比例函數(shù) 的圖象經(jīng)過點(diǎn) , 則
解得k=2,
故反比例函數(shù)為
又∵點(diǎn)B(2,m)在 的圖象上,

∴B(2,1).
設(shè)由y=x+1的圖象平移后得到的函數(shù)解析式為y=x+b,
由題意知y=x+b的圖象經(jīng)過點(diǎn)B(2,1),
則1=2+b.
解得b=﹣1.
故平移后的一次函數(shù)解析式為y=x﹣1.
令y=0,則0=x﹣1.
解得x=1.
故平移后的一次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)為(1,0).
【解析】根據(jù)點(diǎn) ,點(diǎn)B(2,m)都在反比例函數(shù)上可得到m的值.根據(jù)新函數(shù)是由平移得到的可得到新函數(shù)k的值,把點(diǎn)B的坐標(biāo)代入即可求得新函數(shù)解析式,進(jìn)而求得與x軸的交點(diǎn)坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,物理教師為同學(xué)們演示單擺運(yùn)動(dòng),單擺左右擺動(dòng)中,在OA的位置時(shí)俯角∠EOA=30°,在OB的位置時(shí)俯角∠FOB=60°,若OC⊥EF,點(diǎn)A比點(diǎn)B高7cm.求:

(1)單擺的長度( ≈1.7);
(2)從點(diǎn)A擺動(dòng)到點(diǎn)B經(jīng)過的路徑長(π≈3.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,橢圓 的右頂點(diǎn)和上頂點(diǎn)分別為點(diǎn)A,B,M是線段AB的中點(diǎn),且 ..
(1)求橢圓的離心率;
(2)若a=2,四邊形ABCD內(nèi)接于橢圓,AB∥CD,記直線AD,BC的斜率分別為k1 , k2 , 求證:k1k2為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算或解方程:
(1)( 0|﹣4tan45°+6cos60°﹣|﹣5|
(2)x2﹣3x=5(x﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為10cm,弦AB∥CD,AB=12cm,CD=16cm,則AB和CD的距離為(
A.2cm
B.14cm
C.2cm或14cm
D.10cm或20cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P、Q是反比例函數(shù)y= 圖象上的兩點(diǎn),PA⊥y軸于點(diǎn)A,QN⊥x軸于點(diǎn)N,作PM⊥x軸于點(diǎn)M,QB⊥y軸于點(diǎn)B,連接PB、QM,△ABP的面積記為S1 , △QMN的面積記為S2 , 則S1S2 . (填“>”或“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.“任意畫一個(gè)三角形,其內(nèi)角和是360°”是隨機(jī)事件
B.“明天的降水概率為80%”,意味著明天降雨的可能性較大
C.“某彩票中獎(jiǎng)概率是1%”,表示買100張這種彩票一定會(huì)中獎(jiǎng)
D.曉芳拋一枚硬幣10次,有7次正面朝上,當(dāng)她拋第11次時(shí),正面向上的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中裝有大小、質(zhì)地完全相同的3只球,球上分別標(biāo)有2,3,5三個(gè)數(shù)字.
(1)從這個(gè)袋子中任意摸一只球,所標(biāo)數(shù)字是奇數(shù)的概率是
(2)從這個(gè)袋子中任意摸一只球,記下所標(biāo)數(shù)字,不放回,再從從這個(gè)袋子中任意摸一只球,記下所標(biāo)數(shù)字.將第一次記下的數(shù)字作為十位數(shù)字,第二次記下的數(shù)字作為個(gè)位數(shù)字,組成一個(gè)兩位數(shù).求所組成的兩位數(shù)是5的倍數(shù)的概率.(請(qǐng)用“畫樹狀圖”或“列表”的方法寫出過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與x軸平行,且與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB圍成的圖形稱為該拋物線對(duì)應(yīng)的準(zhǔn)碟形,線段AB稱為碟寬,頂點(diǎn)M稱為碟頂,點(diǎn)M到線段AB的劇烈為碟高.
(1)拋物線y=x2對(duì)應(yīng)的碟寬為;拋物線y= x2對(duì)應(yīng)的碟寬為;拋物線y=ax2(a>0)對(duì)應(yīng)的碟寬為;拋物線y=a(x﹣3)2+2(a>0)對(duì)應(yīng)的碟寬為;
(2)利用圖(1)中的結(jié)論:拋物線y=ax2﹣4ax﹣ (a>0)對(duì)應(yīng)的碟寬為6,求拋物線的解析式.
(3)將拋物線yn=anx2+bnx+cn(an>0)的對(duì)應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3,…),定義F1 , F2 , …..Fn為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn1的相似比為 ,且Fn的碟頂是Fn1的碟寬的中點(diǎn),現(xiàn)在將(2)中求得的拋物線記為y1 , 其對(duì)應(yīng)的準(zhǔn)蝶形記為F1
①求拋物線y2的表達(dá)式;
②若F1的碟高為h1 , F2的碟高為h2 , …Fn的碟高為hn . 則hn= , Fn的碟寬右端點(diǎn)橫坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案