【題目】小明同學(xué)上周末對(duì)公園鐘樓(AB)的高度進(jìn)行了測量,如圖,他站在點(diǎn)D處測得鐘樓頂部點(diǎn)A的仰角為67°,然后他從點(diǎn)D沿著坡度為i=1:的斜坡DF方向走20米到達(dá)點(diǎn)F,此時(shí)測得建筑物頂部點(diǎn)A的仰角為45°.已知該同學(xué)的視線距地面高度為1.6米(即CD=EF=1.6米),圖中所有的點(diǎn)均在同一平面內(nèi),點(diǎn)B、D、G在同一條直線上,點(diǎn)E、F、G在同一條直線上,AB、CD、EF均垂直于BG.則鐘樓AB的高約為?(精確到0.1)(參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)
【答案】50.2米
【解析】
過C作CN⊥AB于N,過E作EM⊥AB于M,延長DC交EM于H,根據(jù)矩形的性質(zhì)得到BM=EG,HE=DG,MH=BD,解直角三角形即可得到結(jié)論.
過C作CN⊥AB于N,過E作EM⊥AB于M,延長DC交EM于H,
則BM=EG,HE=DG,MH=BD,
在Rt△DFG中,DF=20,1:3:4,
設(shè)FG=3a,則DG=4a,DF=5a=20,解得:a=4,
∴DG=4a=16,GF=3a=12,
∴BM=EG=13.6,HE=DG=16,
設(shè)BD=x,則CN=MH=x,
∴ME=16+x.
∵∠AEM=45°,∠AME=90°,
∴∠MAE=∠AEM=45°,
∴AM=ME=16+x.
∵MN=MB-NB=HD-CD=EG-EF=FG=12,
∴AN=AM+MN=16+x+12=28+x.
∵∠ANC=90°,∠ACN=67°,
∴tan∠ACN2.36,
解得:x≈20.59,
∴AB=AN+NB=28+x+1.6=50.19≈50.2(米).
答:鐘樓AB的高約為50.2米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+3與x軸交于點(diǎn)A(-1,0),B(3,0),與y軸交于點(diǎn)C。
(1)求拋物線的解析式;
(2)點(diǎn)P是第一象限拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,交BC于點(diǎn)H.當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí)滿足PC=CH?求出此時(shí)點(diǎn)P的坐標(biāo);
(3)若m≤x≤m+1時(shí),二次函數(shù)y=ax2+bx+3的最大值為m,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D是圓上兩點(diǎn),且OD∥AC,OD與BC交于點(diǎn)E.
(1)求證:E為BC的中點(diǎn);
(2)若BC=8,DE=3,求AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被平均分成3個(gè)扇形,分別標(biāo)有1、2、3三個(gè)數(shù)字,小王和小李各轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤為一次游戲,當(dāng)每次轉(zhuǎn)盤停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束得到一組數(shù)(若指針指在分界線時(shí)重轉(zhuǎn)).
(1)請(qǐng)你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;
(2)求每次游戲結(jié)束得到的一組數(shù)恰好是方程x2﹣3x+2=0的解的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示圖案是我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的,人們稱它為”趙爽弦圖“.已知AE=4,BE=3,若向正方形ABCD內(nèi)隨意投擲飛鏢(每次均落在正方形ABCD內(nèi),且落在正方形ABCD內(nèi)任何一點(diǎn)的機(jī)會(huì)均等),則恰好落在正方形EFGH內(nèi)的概率為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成相應(yīng)學(xué)習(xí)任務(wù):
相似四邊形
如果兩個(gè)四邊形的角分別相等,邊成比例,那么這兩個(gè)四邊形叫做相似四邊形.
如圖1中,兩個(gè)四邊形和中,,,因此四邊形四邊形
類似與相似三角形,我們也可以用較少的條件判定兩個(gè)四邊形相似.
判定:四邊對(duì)應(yīng)成比例且有一個(gè)角對(duì)應(yīng)相等的兩個(gè)四邊形相似.
如圖2,在四邊形和中,,求證:四邊形
證明:分別連接,
,
,,
···
學(xué)習(xí)任務(wù):
(1)判斷下而命題是否正確?若不正確,請(qǐng)舉出反例.
①四個(gè)角分別相等的兩個(gè)四邊形相似;
②四條邊對(duì)應(yīng)成比例的兩個(gè)四邊形相似;
(2)請(qǐng)將材料中判定方法的證明過程補(bǔ)充完整;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形中,,,,點(diǎn)在射線上,過點(diǎn)作,垂足為點(diǎn),交射線于點(diǎn),交射線于點(diǎn),聯(lián)結(jié),設(shè).
(1)當(dāng)點(diǎn)在邊上時(shí),
①求的面積;(用含的代數(shù)式表示)
②當(dāng)時(shí),求的值;
(2)當(dāng)點(diǎn)在邊的延長線上時(shí),如果與相似,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)敘述并證明三角形內(nèi)角和定理(證明用圖 1);
(2)如圖 2 是七角星形,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com