【題目】1是一個(gè)長(zhǎng)為,寬為的長(zhǎng)方形,沿圖中虛線(xiàn)用剪刀均勻分成四塊小長(zhǎng)方形,然后按圖2形狀拼成一個(gè)正方形.

1)請(qǐng)用兩種不同方法,求圖2中陰影部分的面積(不用化簡(jiǎn))

方法1____________________

方法2____________________

2)觀察圖2,寫(xiě)出,之間的等量關(guān)系,并驗(yàn)證;

3)根據(jù)(2)題中的等量關(guān)系,解決如下問(wèn)題:

①若,求的值;

②若,求的值.

【答案】1;(2,證明見(jiàn)解析;(3)①29;②

【解析】

1)方法1:利用已知圖形結(jié)合邊長(zhǎng)為(m+n)的大正方形的面積減去長(zhǎng)為m,寬為n4個(gè)長(zhǎng)方形面積,方法2:邊長(zhǎng)為(m-n)的正方形的面積;

2)根據(jù)兩個(gè)代數(shù)式都是表示陰影部分的面積可得答案;

3)①②利用(2)中關(guān)系式,將已知變形得出答案.

1)方法1;

方法2

2)由題意得

;

左邊右邊;

3,,

;

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,O是直線(xiàn)AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.

(1)若∠AOC=30°時(shí),則∠DOE的度數(shù)為_____;

(2)將圖①中的∠COD繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖②的位置,其它條件不變,探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫(xiě)出你的結(jié)論,并說(shuō)明理由;

(3)將圖①中的∠COD繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖③的位置,其他條件不變.直接寫(xiě)出∠AOC和∠DOE的度數(shù)之間的關(guān)系:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,DBC邊上一個(gè)動(dòng)點(diǎn)(DB、C均不重合),AD=AE,∠DAE=60°,連接CE

1)求證:ABD≌△ACE

2)求證:CE平分∠ACF;

3)若AB=2,當(dāng)四邊形ADCE的周長(zhǎng)取最小值時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,BD是對(duì)角線(xiàn),且DB⊥BC,E、F分別為邊AB、CD的中點(diǎn).求證:四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,點(diǎn)分別是邊上的點(diǎn),點(diǎn)是一動(dòng)點(diǎn),令

1)若點(diǎn)在線(xiàn)段上,如圖①所示,且,則_____;

2)若點(diǎn)在邊上運(yùn)動(dòng),如圖②所示,則、之間的關(guān)系為______;

3)如圖③,若點(diǎn)在斜邊的延長(zhǎng)線(xiàn)上運(yùn)動(dòng),請(qǐng)寫(xiě)出、、之間的關(guān)系式,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過(guò)程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長(zhǎng)為4米.
(1)求新傳送帶AC的長(zhǎng)度;
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)4米的貨物MNQP是否需要挪走,并說(shuō)明理由.(說(shuō)明:(1)(2)的計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.24, ≈2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:線(xiàn)段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙兩同學(xué)的作業(yè):

甲:(1)以點(diǎn)C為圓心,AB長(zhǎng)為半徑畫(huà)。

(2)以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫(huà);

(3)兩弧在BC上方交于點(diǎn)D,連接AD,CD,四邊形ABCD即為所求(如圖1)

乙:(1)連接AC,作線(xiàn)段AC的垂直平分線(xiàn),交AC于點(diǎn)M;

(2)連接BM并延長(zhǎng),在延長(zhǎng)線(xiàn)上取一點(diǎn)D,使MD=MB,連接AD,CD,四邊形ABCD即為所求(如圖2).

對(duì)于兩人的作業(yè),下列說(shuō)法正確的是( 。

A. 兩人都對(duì) B. 兩人都不對(duì) C. 甲對(duì),乙不對(duì) D. 甲不對(duì),乙對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。

現(xiàn)有19張硬紙板,裁剪時(shí)張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線(xiàn)分別交AD于點(diǎn)E、F,連接BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是( )

A.①②③④
B.②③
C.①②④
D.①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案