19、如圖,已知⊙O是△ABC的外接圓,AD是△ABC的高,AB=7,AC=6,AD=4.2,則⊙O的直徑是
10
分析:如圖,連接AO,延長(zhǎng)AO交⊙O于點(diǎn)M,連接BM.由AM是直徑,可得∠ABM=90°.所以sinC=sinM=AD:AC=AB:AM,根據(jù)這個(gè)比例式可以求出AM.
解答:解:連接AO,延長(zhǎng)AO交⊙O于點(diǎn)M,連接BM.
∵AD是BC邊上的高,
∴△ABD,△ADC都是直角三角形,
又∵AM是直徑,則∠ABM=90°,
由圓周角定理知,∠C=∠M,
∴sinC=sinM=AD:AC=AB:AM,
∴AM=10.
故答案是:10.
點(diǎn)評(píng):本題考查了圓周角定理和解直角三角形.解題時(shí),利用了直徑所對(duì)的圓周角是直角,圓周角定理,直角三角形的性質(zhì),正弦的概念,勾股定理等來(lái)求解,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,∠CAB=30°,過(guò)點(diǎn)C的⊙O的切線(xiàn)交AB延長(zhǎng)線(xiàn)于D,若OD=4
3
,那么弦AC長(zhǎng)等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知A是半徑為1的⊙O上一點(diǎn),以A為圓心,AO為半徑畫(huà)弧交⊙O于點(diǎn)B、C;以C為圓心,CO為半徑畫(huà)弧交⊙O于點(diǎn)D、A.則圖中陰影面積為
 
平方單位(結(jié)果取準(zhǔn)確值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•梁子湖區(qū)模擬)如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過(guò)點(diǎn)C的直線(xiàn)與AB的延長(zhǎng)線(xiàn)交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線(xiàn);
(2)若點(diǎn)M是
AB
的中點(diǎn),CM交AB于點(diǎn)N,AB=8,求MN•MC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•資陽(yáng))已知a、b是正實(shí)數(shù),那么,
a+b
2
ab
是恒成立的.
(1)由(
a
-
b
)2≥0
恒成立,說(shuō)明
a+b
2
ab
恒成立;
(2)填空:已知a、b、c是正實(shí)數(shù),由
a+b
2
ab
恒成立,猜測(cè):
a+b+c
3
3abc
3abc
也恒成立;
(3)如圖,已知AB是直徑,點(diǎn)P是弧上異于點(diǎn)A和點(diǎn)B的一點(diǎn),PC⊥AB,垂足為C,AC=a,BC=b,由此圖說(shuō)明
a+b
2
ab
恒成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河池)如圖,已知AB是⊙O的直徑,⊙O過(guò)BC的中點(diǎn)D,且DE⊥AC于點(diǎn)E.
(1)試判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若∠C=30°,CE=6,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案