【題目】如圖,是等邊三角形,旋轉(zhuǎn)后能與重合.

1)旋轉(zhuǎn)中心是哪一點?

2)旋轉(zhuǎn)角度是多少度?

3)連結(jié)后,是什么三角形?簡單說明理由.

【答案】1)旋轉(zhuǎn)中心是點;(2)旋轉(zhuǎn)角度是;(3是等邊三角形,理由詳見解析

【解析】

1)根據(jù)旋轉(zhuǎn)后點B的沒有改變可知點B就是旋轉(zhuǎn)中心;
2)找出旋轉(zhuǎn)前后ABBC是對應(yīng)邊,所以ABBC的夾角等于旋轉(zhuǎn)角度的度數(shù),再根據(jù)等邊三角形的內(nèi)角都是60°進行求解;
3)利用旋轉(zhuǎn)的性質(zhì)結(jié)合等邊三角形的判定方法得出答案.

解:

(1)∵△ABP旋轉(zhuǎn)后能與P′BC重合,點B是對應(yīng)點,沒有改變,
∴點B是旋轉(zhuǎn)中心;
(2)ABBC是旋轉(zhuǎn)前后對應(yīng)邊,
旋轉(zhuǎn)角=ABC,
∵△ABC是等邊三角形,
∴∠ABC=60,
∴旋轉(zhuǎn)角是60;

3是等邊三角形

由旋轉(zhuǎn)的性質(zhì)可得:

為等邊三角形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),B(3,0).下列結(jié)論:①2a﹣b=0;(a+c)2<b2;③當(dāng)﹣1<x<3時,y<0;④當(dāng)a=1時,將拋物線先向上平移2個單位,再向右平移1個單位,得到拋物線y=(x﹣2)2﹣2.其中正確的是(  )

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD為臺球桌面,AD260cmAB130cm,球目前在E點位置,AE60cm.如果小丁瞄準(zhǔn)BC邊上的點F將球打過去,經(jīng)過反彈后,球剛好彈到D點位置.求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實“美麗泰州”的工作部署,市政府計劃對城區(qū)道路進行改造,現(xiàn)安排甲、乙兩個工程隊完成該改造工作.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造720米的道路比乙隊改造同樣長的道路少用4.

(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?

(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,若需改造的道路全長2400米,改造總費用不超過195萬元,則至少安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)a2,b=﹣3時,分別求代數(shù)式a22ab+b2和(ab2的值.

當(dāng)a=﹣b=﹣2.25時,分別求代數(shù)式a22ab+b2和(ab2的值.

猜想這兩個代數(shù)式的值有何關(guān)系?

根據(jù)猜想用簡便方法算出當(dāng)a2018,b2021時,代數(shù)式a22ab+b2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的邊BCx軸上,且∠ACB=90°.反比例函數(shù)y=x0)的圖象經(jīng)過AB邊的中點D,且與AC邊相交于點E,連接CD.已知BC=2OB,△BCD的面積為6

1)求k的值;(2)若AE=BC,求點A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某小組做用頻率估計概率“的實驗時,繪出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的實驗可能是(

A. 拋一枚硬幣,出現(xiàn)正面朝上

B. 從一個裝有2個紅球1個黑球的袋子中任取一球,取到的是黑球

C. 一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃

D. 擲一枚均勻的正六面體骰子,出現(xiàn)3點朝上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是菱形,在同一條直線上,.

1)求證:;

2)當(dāng)時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,對角線BD所在的直線上有兩點E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示

(1)求證:△ABE≌△ADF;

(2)試判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案