【題目】如圖,在中.,,,點是的中點,點是邊上一動點,沿所在直線把翻折到的位置,交于點.若為直角三角形,則的長為_______.
【答案】3或
【解析】
由∠C=90°,BC=2,AC=2可得tanB=,即∠B=30°,再根據(jù)直角三角形的性質(zhì)可得AB=2AC=4;再由翻折的性質(zhì)可得DB=DC=,EB′=EB,∠DB′E=∠B=30°;設AE=x,則BE=4﹣x,EB′=4﹣x.當∠AFB′=90°時,解直角三角形可得EF=x﹣;又由在Rt△B′EF中,∠EB′F=30°,可得EB′=2EF;再用x表示出來,然后解關(guān)于x的方程即可;②當∠AB′F=90°時,即B′不落在C點處時,在進行求解即可.
解:∵∠C=90°,BC=2,AC=2,
∴tanB=,
∴∠B=30°,
∴AB=2AC=4,
∵點D是BC的中點,沿DE所在直線把△BDE翻折到△B′DE的位置,B′D交AB于點F
∴DB=DC=,EB′=EB,∠DB′E=∠B=30°,
設AE=x,則BE=4﹣x,EB′=4﹣x,
①當∠AFB′=90°時,
在Rt△BDF中,cosB= ,
∴BF=cos30°=,
∴EF=﹣(4﹣x)=x﹣,
在Rt△B′EF中,∵∠EB′F=30°,
∴EB′=2EF,
即4﹣x=2(x﹣),解得x=3,此時AE為3;
②當∠AB′F=90°時,即B′不落在C點處時,作EH⊥AB′于H,連接AD,如圖,
∵DC=DB′,AD=AD,
∴Rt△ADB′≌Rt△ADC,
∴AB′=AC=2,
∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,
∴∠EB′H=60°,
在Rt△EHB′中,B′H=B′E=(4﹣x),EH=B′H=(4﹣x),
在Rt△AEH中,
∵EH2+AH2=AE2,
∴(4﹣x)2+[(4﹣x)+2]2=x2,解得x= ,此時AE為.
綜上所述,AE的長為3或.
故答案為3或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在雙曲線y=的第一象限的那一支上,AB垂直于x軸與點B,
點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若△ADE
的面積為3,則k的值為 ▲ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家蔬菜公司計劃到某綠色蔬菜基地收購A,B兩種蔬菜共140噸,預計兩種蔬菜銷售后獲利的情況如下表所示:
銷售品種 | A種蔬菜 | B種蔬菜 |
每噸獲利(元) | 1200 | 1000 |
其中A種蔬菜的5%,B種蔬菜的3%須運往C市場銷售,但C市場的銷售總量不超過5.8噸.設銷售利潤為W元(不計損耗),購進A種蔬菜x噸.
(1)求W與x之間的函數(shù)關(guān)系式;
(2)將這140噸蔬菜全部銷售完,最多可獲得多少利潤?
(3)由于受市場因素影響,公司進貨時調(diào)查發(fā)現(xiàn),A種蔬菜每噸可多獲利100元,B種蔬菜每噸可多獲利m(200<m<400)元,但B種蔬菜銷售數(shù)量不超過90噸.公司設計了一種獲利最大的進貨方案,銷售完后可獲利179000元,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在某飛機場東西方向的地面 l 上有一長為 1km 的飛機跑道 MN(如圖),在跑道 MN的正西端 14.5 千米處有一觀察站 A.某時刻測得一架勻速直線降落的飛機位于點 A 的北偏西30°,且與點 A 相距 15 千米的 B 處;經(jīng)過 1 分鐘,又測得該飛機位于點 A 的北偏東 60°,且與點 A 相距 5千米的 C 處.
(1)該飛機航行的速度是多少千米/小時?(結(jié)果保留根號)
(2)如果該飛機不改變航向繼續(xù)航行,那么飛機能否降落在跑道 MN 之間?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開設了“3D”打印、數(shù)學史、詩歌欣賞、陶藝制作四門校本課程,為了解學生對這四門校本課程的喜愛情況,對學生進行了隨機問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了(圖1)、(圖2)兩幅均不完整的統(tǒng)計圖.
請您根據(jù)圖中提供的信息回答下列問題:
(1)統(tǒng)計圖中的a= ,b= ;
(2)“D”對應扇形的圓心角為 度;
(3)根據(jù)調(diào)查結(jié)果,請您估計該校1200名學生中最喜歡“數(shù)學史”校本課程的人數(shù);
(4)小明和小亮參加校本課程學習,若每人從“A”、“B”、“C”三門校本課程中隨機選取一門,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一門校本課程的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,,,點分別是的中點,連接.
(1)探索發(fā)現(xiàn):
圖1中,的值為_____________;的值為_________.
(2)拓展探究
若將繞點逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中的大小有無變化?請僅就圖2的情形給出證明.
(3)問題解決
當旋轉(zhuǎn)至三點在同一直線時,直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我市“青山綠水”行動中,某村計劃對面積為3640的山坡進行綠化,經(jīng)投標由甲,乙兩個工程隊來完成.已知甲隊每天能完成綠化的面積是乙隊每天完能完成綠化的面積的2倍,如果兩隊各自獨立完成面積為400區(qū)域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天各能完成多少面積的綠化;
(2)若甲隊每天綠化費用是1.2萬元,乙隊每天綠化費用為0.5萬元,該村要使這次綠化的總費用不過40萬元,則至少應安排乙工程隊綠化多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)如今,“垃圾分類”意識已深入人心,如圖是生活中的四個不同的垃圾投放桶,分別寫著:有害垃圾、廚余垃圾、其他垃圾、可回收垃圾.其中小明投放了一袋垃圾,小麗投放了兩袋垃圾.
(1)直接寫出小明投放的垃圾恰好是“廚余垃圾”的概率;
(2)用列表法或畫樹狀圖法求小麗投放的兩袋垃圾是不同類的概率
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形的邊長為,點為正方形的中心,點為邊上一動點,直線交于點,過點作,垂足為點,連接,則的最小值為( )
A.2B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com