如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC的方向以每秒2cm的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),在線段AD上以每秒1cm的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)B,A同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)P隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)當(dāng)t為何值時(shí),四邊形PQDC是平行四邊形.
(2)當(dāng)t為何值時(shí),以C,D,Q,P為頂點(diǎn)的梯形面積等于60cm2?
(3)是否存在點(diǎn)P,使△PQD是等腰三角形?若存在,請(qǐng)求出所有滿足要求的t的值,若
不存在,請(qǐng)說明理由.
(1)∵四邊形PQDC是平行四邊形
∴DQ=CP
∵DQ=AD-AQ=16-t,CP=21-2t
∴16-t=21-2t
解得 t=5
當(dāng) t=5秒時(shí),四邊形PQDC是平行四邊形
(2)若點(diǎn)P,Q在BC,AD上時(shí)
|
解得t=9(秒)
若點(diǎn)P在BC延長(zhǎng)線上時(shí),則CP=2t-21,
∴
解得 t=15(秒)
∴當(dāng)t=9或15秒時(shí),以C,D,Q,P為頂點(diǎn)的梯形面積等
(3)當(dāng)PQ=PD時(shí)
作PH⊥AD于H,則HQ=HD
∵QH=HD=QD=(16-t)
由AH=BP得
解得秒
當(dāng)PQ=QD時(shí) QH=AH-AQ=BP-AQ=2t-t=t, QD=16-t
∵QD2= PQ2=122+t2
∴(16--t)2=122+t2 解得(秒)
當(dāng)QD=PD時(shí) DH=AD -AH=AD-BP=16-2t
∵QD2=PD2=PH2+HD2=122+(16-2t)2
∴(16-t)2=122+(16-2t)2
即 3t2-32t+144=0
∵△<0
∴方程無實(shí)根
綜上可知,當(dāng)秒或(秒)時(shí), △BPQ是等腰三角形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、3cm | B、7cm | C、3cm或7cm | D、2cm |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com