【題目】二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對(duì)應(yīng)值如下表:

x

﹣1

0

1

2

3

y

﹣1

﹣2

根據(jù)表格中的信息,完成下列各題

(1)當(dāng)x=3時(shí),y=   

(2)當(dāng)x為何值時(shí),y=0?

(3)①若自變量x的取值范圍是0≤x≤5,求函數(shù)值y的取值范圍;

若函數(shù)值y為正數(shù),則自變量x的取值范圍.

【答案】(1)-1(2)1±2(3)①﹣2≤x≤2②x<1﹣2或x>1+2

【解析】

(1)從表格看出,函數(shù)的對(duì)稱軸為x=1,頂點(diǎn)為(1,﹣2),x=3x=﹣1時(shí)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn),故x=3時(shí),y=﹣1;

(2)把頂點(diǎn)坐標(biāo)、點(diǎn)(﹣1,﹣1)代入函數(shù)表達(dá)式,即可求解;

(3)①當(dāng)0≤x≤5,函數(shù)在頂點(diǎn)處取得最小值,在x=5時(shí),函數(shù)取得最大值,即可求解;②若函數(shù)值y為正數(shù),則x<1﹣2x>1+2

(1)從表格看出,函數(shù)的對(duì)稱軸為x=1,頂點(diǎn)為(1,﹣2),故x=3時(shí),y=﹣1,

故:答案是﹣1;

(2)把頂點(diǎn)坐標(biāo)代入二次函數(shù)頂點(diǎn)式表達(dá)式得:y=a(x﹣1)2﹣2,

把點(diǎn)(﹣1,﹣1)代入上式得:﹣1=a(﹣1﹣1)2﹣2,解得:a=,

則函數(shù)表達(dá)式為:y=(x﹣1)2﹣2,

y=0,則x=1±2;

(3)①當(dāng)0≤x≤5,函數(shù)在頂點(diǎn)處取得最小值,y=﹣2,

當(dāng)x=5時(shí),函數(shù)取得最大值y=(5﹣1)2﹣2=2,

即:函數(shù)值y的取值范圍為:﹣2≤x≤2;

②若函數(shù)值y為正數(shù),則x<1﹣2x>1+2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是邊BC上一動(dòng)點(diǎn) (不與B,C重合),∠ADE=∠B=α,DEAC于點(diǎn)E,且 .下列結(jié)論: ①△ADE∽△ACD;當(dāng)BD=6時(shí),△ABD△DCE全等;③△DCE為直角三角形時(shí),BD8④CD2=CECA.其中正確的結(jié)論是________(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對(duì)角線AC于點(diǎn)F,E為垂足,連結(jié)DF,則∠CDF等于(  )

A. 80° B. 70° C. 65° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船C的求救信號(hào).已知A、B兩船相距100(+1)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測(cè)點(diǎn)D,測(cè)得船C正好在觀測(cè)點(diǎn)D的南偏東75°方向上.

(1)分別求出A與C,A與D間的距離AC和AD(如果運(yùn)算結(jié)果有根號(hào),請(qǐng)保留根號(hào)).

(2)已知距離觀測(cè)點(diǎn)D處100海里范圍內(nèi)有暗礁,若巡邏船A沿直線AC去營救船C,在去營救的途中有無觸礁的危險(xiǎn)?(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個(gè)幾何體的三視圖.

(1)寫出這個(gè)幾何體的名稱;

(2)根據(jù)圖中數(shù)據(jù)計(jì)算這個(gè)幾何體的表面積;

(3)如果一只螞蟻要從這個(gè)幾何體上的點(diǎn)B出發(fā),沿表面爬到AC的中點(diǎn)D,請(qǐng)你求出這條路線的最短路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等邊三角形.

(1)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角θ(0°<θ<180°),得到△ADE,BDEC所在直線相交于點(diǎn)O.

如圖a,當(dāng)θ=20°時(shí),△ABD△ACE是否全等?   (填”),∠BOE=   度;

當(dāng)△ABC旋轉(zhuǎn)到如圖b所在位置時(shí),求∠BOE的度數(shù);

(2)如圖c,在ABAC上分別截取點(diǎn)B′C′,使AB=AB′,AC=AC′,連接B′C′,將△AB′C′繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角(0°<θ<180°),得到△ADE,BDEC所在直線相交于點(diǎn)O,請(qǐng)利用圖c探索∠BOE的度數(shù),直接寫出結(jié)果,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把平面內(nèi)一條數(shù)軸x繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)角θ(0°<θ<90°)得到另一條數(shù)軸y,x軸和y軸構(gòu)成一個(gè)平面斜坐標(biāo)系.規(guī)定:過點(diǎn)Py軸的平行線,交x軸于點(diǎn)A,過點(diǎn)Px軸的平行線,交y軸于點(diǎn)B,若點(diǎn)Ax軸上對(duì)應(yīng)的實(shí)數(shù)為a,點(diǎn)By軸上對(duì)應(yīng)的實(shí)數(shù)為b,則稱有序?qū)崝?shù)對(duì)(a,b)為點(diǎn)P的斜坐標(biāo),在某平面斜坐標(biāo)系中,已知θ=60°,點(diǎn)M′的斜坐標(biāo)為(3,2),點(diǎn)N與點(diǎn)M關(guān)于y軸對(duì)稱,則點(diǎn)N的斜坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為2的⊙O中,弦AB=2,⊙O上存在點(diǎn)C,使得弦AC=2,則∠BOC=____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,AC為弦,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D的切線交AC的延長(zhǎng)線于點(diǎn)E.

求證:(1)DE⊥AE;

(2)AE+CE=AB.

查看答案和解析>>

同步練習(xí)冊(cè)答案