【題目】如圖,已知和中,,,,,;
(1)請說明的理由;
(2)可以經(jīng)過圖形的變換得到,請你描述這個變換;
(3)求的度數(shù).
【答案】(1)見解析 (2)繞點(diǎn)順時針旋轉(zhuǎn),可以得到 (3)
【解析】
(1)先利用已知條件∠B=∠E,AB=AE,BC=EF,利用SAS可證△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC-∠PAF=∠EAF-∠PAF,即有∠BAE=∠CAF=25°;
(2)通過觀察可知△ABC繞點(diǎn)A順時針旋轉(zhuǎn)25°,可以得到△AEF;
(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根據(jù)三角形外角的性質(zhì)可求∠AMB.
∵,,,
∴,
∴,,
∴,
∴;
通過觀察可知繞點(diǎn)順時針旋轉(zhuǎn),可以得到;
由知,,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與軸交于點(diǎn).二次函數(shù)的圖像經(jīng)過點(diǎn),與軸交于點(diǎn),與一次函數(shù)的圖像交于另一點(diǎn).
(1)求二次函數(shù)的表達(dá)式;
(2)當(dāng)時,直接寫出的取值范圍;
(3)平移,使點(diǎn)的對應(yīng)點(diǎn)落在二次函數(shù)第四象限的圖像上,點(diǎn)的對應(yīng)點(diǎn)落在直線上,求此時點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,P為AB上一點(diǎn),連接CP,以下條件中不能判定△ACP∽△ABC的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線交于B,C兩點(diǎn).
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)求△ABC的面積;
(3)若點(diǎn)N為x軸上的一個動點(diǎn),過點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O,M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次羽毛球賽中,甲運(yùn)動員在離地面米的P點(diǎn)處發(fā)球,球的運(yùn)動軌跡PAN看作一個拋物線的一部分,當(dāng)球運(yùn)動到最高點(diǎn)A時,其高度為3米,離甲運(yùn)動員站立地點(diǎn)O的水平距離為5米,球網(wǎng)BC離點(diǎn)O的水平距離為6米,以點(diǎn)O為原點(diǎn)建立如圖所示的坐標(biāo)系,乙運(yùn)動員站立地點(diǎn)M的坐標(biāo)為(m,0).
(1)求拋物線的解析式(不要求寫自變量的取值范圍);
(2)求羽毛球落地點(diǎn)N離球網(wǎng)的水平距離(即NC的長);
(3)乙原地起跳后可接球的最大高度為2.4米,若乙因?yàn)榻忧蚋叨炔粔蚨颍?/span>m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,
(1)求證:無論k取什么實(shí)數(shù)值,該方程總有兩個不相等的實(shí)數(shù)根?
(2)當(dāng)Rt△ABC的斜邊a=,且兩條直角邊的長b和c恰好是這個方程的兩個根時,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,AB>AC,點(diǎn)D,E分別在邊AB,AC上,且DE∥BC,若AD=2,AE=,則的值是 ;
(2)如圖2,在(1)的條件下,將△ADE繞點(diǎn)A逆時針方向旋轉(zhuǎn)一定的角度,連接CE和BD,的值變化嗎?若變化,請說明理由;若不變化,請求出不變的值;
(3)如圖3,在四邊形ABCD中,AC⊥BC于點(diǎn)C,∠BAC=∠ADC=θ,且tanθ=,當(dāng)CD=6,AD=3時,請直接寫出線段BD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形OABC的頂點(diǎn)A的坐標(biāo)為(4,0),O為坐標(biāo)原點(diǎn),點(diǎn)B在第一象限,連接AC, tan∠ACO=2,D是BC的中點(diǎn),
(1)求點(diǎn)D的坐標(biāo);
(2)如圖2,M是線段OC上的點(diǎn),OM=OC,點(diǎn)P是線段OM上的一個動點(diǎn),經(jīng)過P、D、B三點(diǎn)的拋物線交 軸的正半軸于點(diǎn)E,連接DE交AB于點(diǎn)F.
①將△DBF沿DE所在的直線翻折,若點(diǎn)B恰好落在AC上,求此時點(diǎn)P的坐標(biāo);
②以線段DF為邊,在DF所在直線的右上方作等邊△DFG,當(dāng)動點(diǎn)P從點(diǎn)O運(yùn)動到點(diǎn)M時,點(diǎn)G也隨之運(yùn)動,請直接寫出點(diǎn)G運(yùn)動的路徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了美化校園環(huán)境,向園林公司購買一批樹苗.公司規(guī)定:若購買樹苗不超過60棵,則每棵樹售價120元;若購買樹苗超過60棵,則每增加1棵,每棵樹售價均降低0.5元,且每棵樹苗的售價降到100元后,不管購買多少棵樹苗,每棵售價均為100元.
(1)若該學(xué)校購買50棵樹苗,求這所學(xué)校需向園林公司支付的樹苗款;
(2)若該學(xué)校向園林公司支付樹苗款8800元,求這所學(xué)校購買了多少棵樹苗.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com