如圖,一次函數(shù)y1=k1x+b(k1≠0)的圖象與反比例函數(shù)y2=k2x+b(k2≠0)的圖象交于A,B兩點,觀察圖象,當(dāng)y1>y2時,x的取值范圍是   
﹣1<x<0或x>2.

試題分析:當(dāng)y1>y2時,直線在雙曲線的上方,一次函數(shù)圖象在上方的部分是不等式的解,即:﹣1<x<0或x>2.
故答案是﹣1<x<0或x>2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在一次蠟燭燃燒實驗中,蠟燭燃燒時剩余部分的高度y(cm)與燃燒時間x(h)之間為一次函數(shù)關(guān)系.根據(jù)圖象提供的信息,解答下列問題:
(1)求出蠟燭燃燒時y與x之間的函數(shù)關(guān)系式;
(2)求蠟燭從點燃到燃盡所用的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一次函數(shù)y=kx+b(k≠0)的圖象過點P(﹣,0),且與反比例函數(shù)y=(m≠0)的圖象相交于點A(﹣2,1)和點B.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求點B的坐標(biāo),并根據(jù)圖象回答:當(dāng)x在什么范圍內(nèi)取值時,一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

下表中,y是x的一次函數(shù).
x
2
1
2
 
5
y
6
3
 
12
15
 
(1)求該函數(shù)的表達(dá)式,并補(bǔ)全表格;
(2)已知該函數(shù)圖象上一點M(1,-3)也在反比例函數(shù)圖象上,求這兩個函數(shù)圖象的另一交點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)p,q都是實數(shù),且.我們規(guī)定:滿足不等式的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為.對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)時,有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的解析式;
(3)若實數(shù)c,d滿足,且,當(dāng)二次函數(shù)是閉區(qū)間上的“閉函數(shù)”時,求c,d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

現(xiàn)計劃把甲種貨物1240噸和乙種貨物880噸用一列貨車運往某地,已知這列貨車掛有A、B兩種不同規(guī)格的貨車車廂共40節(jié),使用A型車廂每節(jié)費用為6000元,使用B型車廂每節(jié)費用為8000元。
(1)設(shè)運送這批貨物的總費用為萬元,這列貨車掛A型車廂節(jié),試寫出之間的函數(shù)關(guān)系式;
(2)如果每節(jié)A型車廂最多可裝甲種貨物35噸和乙種貨物15噸,每節(jié)B型車廂最多可裝甲種貨物25噸和乙種貨物35噸,裝貨時按此要求安排A、B兩種車廂的節(jié)數(shù),那么共有哪幾種安排車廂的方案?
(3)在上述方案中,哪種方案運費最省,最少運費為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=(m+2)xm2-3是正比例函數(shù),則m等于( 。
A.±2B.2C.-2D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在函數(shù)y=-3x的圖象上取一點P,過P點作PA⊥x軸,已知P點的橫坐標(biāo)為-2,求△POA的面積(O為坐標(biāo)原點).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知直線l1:y=k1x+4與直線l2:y=k2x﹣5交于點A,它們與y軸的交點分別為點B,C,點E,F(xiàn)分別為線段AB、AC的中點,則線段EF的長度為      

查看答案和解析>>

同步練習(xí)冊答案