【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過(guò)原點(diǎn),且與x軸相交于點(diǎn)A,點(diǎn)A的橫坐標(biāo)為6,拋物線頂點(diǎn)為點(diǎn)B.
(1)求這條拋物線的表達(dá)式和頂點(diǎn)B的坐標(biāo);
(2)過(guò)點(diǎn)O作OP∥AB,在直線OP上點(diǎn)取一點(diǎn)Q,使得∠QAB=∠OBA,求點(diǎn)Q的坐標(biāo);
(3)將該拋物線向左平移m(m>0)個(gè)單位,所得新拋物線與y軸負(fù)半軸相交于點(diǎn)C且頂點(diǎn)仍然在第四象限,此時(shí)點(diǎn)A移動(dòng)到點(diǎn)D的位置,CB:DB=3:4,求m的值.
【答案】(1)(x-3)2-4,頂點(diǎn)B的坐標(biāo)是(3,-4);(2)(3)
【解析】
(1)將點(diǎn)O,點(diǎn)A坐標(biāo)代入解析式可求拋物線的表達(dá)式和頂點(diǎn)B的坐標(biāo);
(2)由點(diǎn)A,點(diǎn)B坐標(biāo)可求直線AB解析式,即可求直線OP解析式為:y=x,設(shè)點(diǎn)Q(3k,4k),可證四邊形OQAP為等腰梯形,可得OB=QA,由兩點(diǎn)距離公式可求k的值,即可求點(diǎn)Q坐標(biāo);
(3)過(guò)點(diǎn)B分別做作x、y軸垂線,垂足分別為點(diǎn)E、F,由題意可證△BCF∽△BDE,可得,可得,可得,可得關(guān)于m的方程,即可求m的值.
(1)∵點(diǎn)O(0,0)、A(6,0)在拋物線上
∴,
解得
∴拋物線的解析式為=(x-3)2-4,
∴頂點(diǎn)B的坐標(biāo)是(3,-4)
(2)如圖,
∵A(6,0),B(3,-4)
∴直線AB解析式為:y=x-8
∵OP∥AB
∴直線OP解析式為:y=x
設(shè)點(diǎn)Q(3k,4k),
∵∠OBA=∠QAB>∠OAB,
∴k>0
∵OP平行于AB,QA不平行于OB
∴四邊形OQAP為梯形
又∵∠QAB=∠OBA
∴四邊形OQAP為等腰梯形
∴QA=OB
∴(6-3k)2+(4k)2=25
∴或k=-1(舍去)
∴
(3)由(1)知
設(shè)拋物線向左平移m(m>0)個(gè)單位后的新拋物線表達(dá)式為
∵新拋物線與y軸負(fù)半軸相交于點(diǎn)C且頂點(diǎn)仍然在第四象限,設(shè)點(diǎn)C的坐標(biāo)為C(0,c)
∴0<m<3,-4<c<0,
如圖,過(guò)點(diǎn)B分別做作x、y軸垂線,垂足分別為點(diǎn)E、F
∴,且∠BFC=∠BED=90°
∴△BCF∽△BDE
∴
∴
∴
∴
又∵
∴
∴
∴或者m2=3(舍去)
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D是等邊△ABC內(nèi)一點(diǎn),將△DBC繞點(diǎn)B旋轉(zhuǎn)到△EBA的位置,則∠EBD的度數(shù)是( )
A. 45°B. 60°C. 90°D. 120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列5個(gè)結(jié)論:①4a+2b+c>0;②abc<0;③b<a﹣c;④3b>2c;⑤a+b<m(am+b),(m≠1的實(shí)數(shù));其中正確結(jié)論的個(gè)數(shù)為( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連接BO并延長(zhǎng)交⊙O于點(diǎn)E,連接AE,若AB=6,CD=1,則AE的長(zhǎng)為( 。
A. 3 B. 8 C. 12 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2﹣(a+1)x﹣3與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,0).
(1)求B點(diǎn)與頂點(diǎn)D的坐標(biāo);
(2)經(jīng)過(guò)點(diǎn)B的直線l與y軸正半軸交于點(diǎn)M,S△ADM=5,求直線l的解析式;
(3)點(diǎn)P(t,0)為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線m,將拋物線在直線m左側(cè)的部分沿直線m對(duì)折,圖象的其余部分保持不變,得到一個(gè)新圖象G.請(qǐng)結(jié)合圖象回答:當(dāng)圖象G與直線l沒(méi)有公共點(diǎn)時(shí),t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一組數(shù)據(jù)1,2,3,4,x的平均數(shù)與中位數(shù)相同,則實(shí)數(shù)x的值不可能是( )
A. 0 B. 2.5 C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過(guò)點(diǎn)C,且對(duì)稱(chēng)軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動(dòng)點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式.
(2)在圖①中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),△PCQ為直角三角形?
(3)在圖②中,若點(diǎn)P在對(duì)稱(chēng)軸上從點(diǎn)A開(kāi)始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動(dòng),過(guò)點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖正方形ABCD的邊長(zhǎng)為4,E、F分別為DC、BC中點(diǎn).
(1)求證:△ADE≌△ABF.
(2)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題解決)
一節(jié)數(shù)學(xué)課上,老師提出了這樣一個(gè)問(wèn)題:如圖1,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?
小明通過(guò)觀察、分析、思考,形成了如下思路:
思路一:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到△BP′A,連接PP′,求出∠APB的度數(shù);
思路二:將△APB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到△CP'B,連接PP′,求出∠APB的度數(shù).
請(qǐng)參考小明的思路,任選一種寫(xiě)出完整的解答過(guò)程.
(類(lèi)比探究)
如圖2,若點(diǎn)P是正方形ABCD外一點(diǎn),PA=3,PB=1,PC=,求∠APB的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com