【題目】如圖,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒4cm的速度沿折線A﹣C﹣B﹣A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)若點(diǎn)P在AC上,且滿足△BCP的周長(zhǎng)為14cm,求此時(shí)t的值;
(2)若點(diǎn)P在∠BAC的平分線上,求此時(shí)t的值;
(3)在運(yùn)動(dòng)過程中,直接寫出當(dāng)t為何值時(shí),△BCP為等腰三角形.
【答案】(1);(2);(3)t為s或5.3s或5s或s時(shí),△BCP為等腰三角形.
【解析】
(1)根據(jù)△BCP的周長(zhǎng)為14cm, 可得AP=4t,PC=8-4t,BP=14-PC-BC=4t,根據(jù)勾股定理列出方程可求得t的值;
(2)過P作PE⊥AB,設(shè)CP=x,根據(jù)角平分線的性質(zhì)和勾股定理列方程式求出CP,由此可求出t;
(3)分類討論:當(dāng)CP=CB時(shí),△BCP為等腰三角形,若點(diǎn)P在AC上,根據(jù)AP的長(zhǎng)即可得到t的值,若點(diǎn)P在AB上,根據(jù)P移動(dòng)的路程易得t的值;當(dāng)PC=PB時(shí),△BCP為等腰三角形,作PD⊥BC于D,根據(jù)等腰三角形的性質(zhì)得BD=CD,則可判斷PD為△ABC的中位線,則AP=0.5AB=5,易得t的值;當(dāng)BP=BC=6時(shí),△BCP為等腰三角形,易得t的值.
(1)∵△ABC中,∠ACB=90°,AB=10cm,BC=6cm,
∴由勾股定理得,
如圖,連接BP,
當(dāng)△BCP的周長(zhǎng)為14cm 時(shí),
在中根據(jù)勾股定理
即
解得.
故此時(shí);
(2)如圖1,過P作PE⊥AB,
又∵點(diǎn)P恰好在∠BAC的角平分線上,且∠C=90°,AB=10cm,BC=6cm,
∴CP=EP,
∴△ACP≌△AEP(HL),
∴AC=8cm=AE,BE=2,
設(shè)CP=x,則BP=6x,PE=x,
∴Rt△BEP中,BE2+PE2=BP2,
即22+x2=(6x)2
解得x=,
∴CP=,
∴CA+CP=8+=,
∴;
(3)①如圖2,當(dāng)CP=CB時(shí),△BCP為等腰三角形
若點(diǎn)P在CA上,則4t=86,
解得t= (s);
②如圖3,
當(dāng)BP=BC=6時(shí),△BCP為等腰三角形,
∴AC+CB+BP=8+6+6=20,
∴t=20÷4=5(s);
③如圖4,
若點(diǎn)P在AB上,CP=CB=6,作CD⊥AB于D,則根據(jù)面積法求得CD=4.8,
在Rt△BCD中,由勾股定理得,BD=3.6,
∴PB=2BD=7.2,
∴CA+CB+BP=8+6+7.2=21.2,
此時(shí)t=21.2÷4=5.3(s);
④如圖5,
當(dāng)PC=PB時(shí),△BCP為等腰三角形,作PD⊥BC于D,則D為BC的中點(diǎn),
∴PD為△ABC的中位線,
∴AP=BP=AB=5,
∴AC+CB+BP=8+6+5=19,
∴t=19÷4=(s);
綜上所述,t為s或5.3s或5s或s時(shí),△BCP為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,△AEC繞A點(diǎn)順時(shí)針旋轉(zhuǎn)60°得△APB,∠PAC=20°,求∠BAE.
(2)解不等式組:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的10個(gè)小球,其中紅球4個(gè),黑球6個(gè).
(1)先從袋子中取出m(m>1)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,請(qǐng)完成下列表格;
(2)先從袋子中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)黑球的概率等于,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出一列數(shù),,,,,,…,,,,…,,…,在這列數(shù)中,第50個(gè)值等于1的項(xiàng)的序號(hào)是( 。
A. 4900 B. 4901 C. 5000 D. 5001
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,對(duì)角線AC平分角∠BAD,點(diǎn)P是△ABC內(nèi)一點(diǎn),連接PA、PB、PC,若PA=6,PB=8,PC=10,則菱形ABCD的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DC交AB于E,過C作⊙O的切線交DB的延長(zhǎng)線于M,若AB=4,∠ADC=45°,∠M=75°,則CD的長(zhǎng)為( )
A. B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC中,P為底邊BC上任意點(diǎn),過P作兩腰的平行線分別與AB,AC相交于Q,R兩點(diǎn),又P′是P關(guān)于直線RQ的對(duì)稱點(diǎn),證明:P′在△ABC的外接圓上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩輛汽車同時(shí)從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時(shí)間,如圖,L1,L2分別表示兩輛汽車的s與t的關(guān)系.
(1)L1表示哪輛汽車到甲地的距離與行駛時(shí)間的關(guān)系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關(guān)系式.
(4)2小時(shí)后,兩車相距多少千米?
(5)行駛多長(zhǎng)時(shí)間后,A、B兩車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,等邊△ABC中,邊長(zhǎng)為4,P、Q為AB、AC上的點(diǎn),將△ABC沿著PQ折疊,使得A點(diǎn)與線段BC上的點(diǎn)D重合,且BD:CD=1:3,則AQ的長(zhǎng)度為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com