【題目】從﹣1,﹣2,﹣3,﹣4,﹣5,﹣6中任取一個數(shù)作為k的值,則能使分式方程有非負(fù)實(shí)數(shù)解且使二次函數(shù)y=x2+2x﹣k﹣1的圖象與x軸無交點(diǎn)的概率為( 。
A.B.C.D.0
【答案】C
【解析】
先解分式方程,使x≥0且x≠1,求出k的取值;再根據(jù)二次函數(shù)y=x2+2x-k-1的圖象與x軸無交點(diǎn),所以△<0,列不等式,求出k的取值;綜合前面所求k的范圍求公共解并求其整數(shù)解;最后根據(jù)概率公式即可得出答案.
,
去分母,方程兩邊同時(shí)乘以x﹣1,
﹣k+2(x﹣1)=3,
x0,
∴k≥﹣5①.
∵x≠1,
∴k≠﹣3②,
由y=x2+2x﹣k﹣1的圖象與x軸無交點(diǎn),則4﹣4(﹣k﹣1)<0,
k<﹣2③,
由①②③得:﹣5≤k<﹣2且k≠﹣3,
∴k的整數(shù)解為:﹣5、﹣4,
∴圖象與x軸無交點(diǎn)的概率為.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD為菱形,點(diǎn)E、F、G、H分別為各邊中點(diǎn),判斷E、F、G、H四點(diǎn)是否在同一個圓上,如果在同一圓上,找到圓心,并證明四點(diǎn)共圓;如果不在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題提出)我們知道:同弧或等弧所對的圓周角都相等,且等于這條弧所對的圓心角的一半.那么,在一個圓內(nèi)同一條弦所對的圓周角與圓心角之間又有什么關(guān)系?
(初步思考)(1)如圖,是的弦,,點(diǎn)、分別是優(yōu)弧和劣弧上的點(diǎn),則______°._______°.
(2)如圖,是的弦,圓心角,點(diǎn)P是上不與A、B重合的一點(diǎn),求弦所對的圓周角的度數(shù)(用m的代數(shù)式表示).
(問題解決)(3)如圖,已知線段,點(diǎn)C在所在直線的上方,且.用尺規(guī)作圖的方法作出滿足條件的點(diǎn)C所組成的圖形(不寫作法,保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△OBF 是直角三角形,∠BFO=90°,∠BOF=30°,△AOB 是等邊三角形,OB=4,點(diǎn) A 與點(diǎn) F 位于直線 OB 的異側(cè).
(Ⅰ)如圖①,求 BF 及 OF 的長;
(Ⅱ)點(diǎn) P 是直線OF 上的一個動點(diǎn),連接 AP,以點(diǎn) A 為旋轉(zhuǎn)中心,把△AOP 逆時(shí)針旋轉(zhuǎn),使邊 AO 與 AB 重合,得△ABD.
①如圖②,求在點(diǎn) P 運(yùn)動過程中,使點(diǎn) D 落在線段 OF 上時(shí) OP 的長;
②求在點(diǎn) P 運(yùn)動過程中,使點(diǎn) P 落在線段 OF 上,且△OPD 的面積等于時(shí) OP 的長(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是長為10m,傾斜角為30°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin65°=0.90,tan65°=2.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.(1)由若干個相同的小立方體搭成的一個幾何體的主視圖和俯視圖如圖所示,俯視圖的方格中的字母和數(shù)字表示該位置上小立方體的個數(shù),則______
(2)如圖(2),是由若干個完全相同的小正方體組成的一個幾何體
①請畫出這個幾何體的左視圖和俯視圖; 用陰影表示
②如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的俯視圖和左視圖不變,那么最多可以再添加______個小正方體?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b與反比例函數(shù)的圖象分別交于點(diǎn)A(﹣1,2),點(diǎn)B(﹣4,n),與x軸,y軸分別交于點(diǎn)C,D.
(1)求此一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)圖中①所示的程序,得到了y與x的函數(shù)圖象圖中②,若點(diǎn)M是y軸正半軸上任意一點(diǎn),過點(diǎn)M作PQ∥x軸交圖象于點(diǎn)P、Q,連結(jié)OP、OQ,則下列結(jié)論正確的是( 。
A.△OPQ的面積為45
B.x<0時(shí),
C.x>0時(shí),y隨x的增大而增大
D.∠POQ可能等于90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,∠ACB=90°,將AB邊繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得線段BD.過點(diǎn)D作DM⊥BC交BC延長線于M,
(1)如圖1,請判斷線段AC、CM、MD的數(shù)量關(guān)系并說明理由;
(2)E為DM延長線上一點(diǎn),當(dāng)點(diǎn)E為如圖2所示的位置時(shí),以AE為斜邊向右側(cè)作等腰Rt△AFE,再過點(diǎn)F作FN⊥DM于N,探究BM、FN、MN三條線段的數(shù)量關(guān)系,并說明理由;
(3)在問題(2)的條件下,當(dāng)點(diǎn)E運(yùn)動到某一位置時(shí)點(diǎn)B、A、F三點(diǎn)恰好在同一直線上,取DE中點(diǎn)P,連接AP,且AB=3,AF=1,請直接寫出AP的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com