已知∠AOB=30°,點P在∠AOB的內(nèi)部,OP=6,P1與P關(guān)于OB對稱,P2與P關(guān)于OA對稱,則△P1OP2的周長為
18
18
;若OA上有一動點M,OB上有一動點N,則△PMN的最小周長為
6
6
分析:(1)根據(jù)軸對稱的性質(zhì),結(jié)合等邊三角形的判定求解;
(2)設(shè)點P關(guān)于OA的對稱點為C,關(guān)于OB的對稱點為D,當點M、N在CD上時,△PMN的周長最小.
解答:解:(1)∵P為∠AOB內(nèi)部一點,點P關(guān)于OA、OB的對稱點分別為P1、P2
∴OP=OP1=OP2=6,且∠P1OP2=2∠AOB=60°,
∴故△OP1P2是等邊三角形.
∴△P1OP2的周長=3×6=18;
(2)分別作點P關(guān)于OA、OB的對稱點C、D,連接CD,分別交OA、OB于點M、N,連接OP、OC、OD、PM、PN.
∵點P關(guān)于OA的對稱點為C,關(guān)于OB的對稱點為D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵點P關(guān)于OB的對稱點為D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等邊三角形,
∴CD=OC=OD=6.
∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN≥CD=6.
故答案為:18;6.
點評:此題考查了軸對稱的性質(zhì),同時考查軸對稱--最短路線問題,并綜合運用了等邊三角形的知識.注意掌握對應(yīng)點的連線與對稱軸的位置關(guān)系是互相垂直,對應(yīng)點所連的線段被對稱軸垂直平分,對稱軸上的任何一點到兩個對應(yīng)點之間的距離相等,對應(yīng)的角、線段都相等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知∠AOB=30°,點P在∠AOB的內(nèi)部,P′與P關(guān)于OA對稱,P″與P關(guān)于OB對稱,則△OP′P″一定是一個
等邊
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知∠AOB=30°,點P在∠AOB內(nèi)部,P1與P關(guān)于OB對稱,P2與P關(guān)于OA對稱,則P1,O,P2三點構(gòu)成的三角形是
等邊
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知∠AOB=30°,將∠AOB繞點O逆時針旋轉(zhuǎn)60°后得到∠EOF,則∠EOF=
30°
30°
.(填度數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,E,O,A三點共線,OB平分∠AOC,∠DOC=2∠EOD,已知∠AOB=30°,則∠EOD的度數(shù)為
40°
40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知∠AOB=30°,點P在∠AOB的內(nèi)部,P1與P關(guān)于0B對稱,P2與P關(guān)于OA對稱,則∠P1PP2的度數(shù)是( 。

查看答案和解析>>

同步練習冊答案