(11·永州)(本題滿分10分)探究問題:
⑴方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,由旋轉可得:
AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF="45° " ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,   ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.

⑵方法遷移:
如圖②,將沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關系,并證明你的猜想.

⑶問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足,試猜想當∠B與∠D滿足什么關系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).
⑴EAF、△EAF、GF.
⑵DE+BF=EF,理由如下:
假設∠BAD的度數(shù)為,將△ADE繞點A順時針旋轉得到△ABG,此時AB與AD重合,由旋轉可得:
AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=  ∴∠2+∠3=∠BAD-∠EAF=
∵∠1=∠2,   ∴∠1+∠3=
即∠GAF=∠EAF
又AG=AE,AF=AF
∴△GAF≌△EAF.
∴GF=EF,
又∵GF="BG+BF=DE+BF    " ∴DE+BF=EF.

⑶當∠B與∠D互補時,可使得DE+BF=EF.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,平行四邊形ABCD中,AD=5cm,AB⊥BD,點O是兩條對角
線的交點,OD=2,則AB=     ▲    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011•雅安)如圖,在?ABCD中,E,F(xiàn)分別是BC,AD中點.
(1)求證:△ABE≌△CDF;
(2)當BC=2AB=4,且△ABE的面積為,求證:四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,點E是AB的中點,∠BCD=20°,則∠ACE=(   )
A.20°B.30°C.45°D.60°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(8分)如圖,已知點D在△ABC的BC邊上,DE//AC交AB于E,DF//AB交AC于F.

(1)求證:AE=DF;
(2)若添加條件_______,則四邊形AEDF是矩形;
若添加條件_______,則四邊形AEDF是菱形;
若添加條件_______,則四邊形AEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(11·十堰)如圖等腰梯形ABCD中,AD//BC,AB//DE,BC=8,AB=6,AD=5,則△CDE的周長是          .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,正方形的邊長為2, 將長為2的線段的兩端放在正方形相鄰的
兩邊上同時滑動.如果點從點出發(fā),沿圖中所示方向按滑動到點
為止,同時點從點出發(fā),沿圖中所示方向按滑動到點為止,那
么在這個過程中,線段的中點所經(jīng)過的路線圍成的圖形的面積為 
A.4-B.
C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分8分)已知矩形ABCD的對角線相交于點O,M 、N分別是OD、OC上異于O、C、D的點。
(1)請你在下列條件①DM=CN,②OM=ON,③MN是△OCD的中位線,④MN∥AB中任選一個添加條件(或添加一個你認為更滿意的其他條件),使四邊形ABNM為等腰梯形,你添加的條件是               。
(2)添加條件后,請證明四邊形ABNM是等腰梯形。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

11·西寧)(本小題滿分8分)如圖12 ,矩形ABCD的對角線相交于點ODECA,AEBD

(1)求證:四邊形AODE是菱形;
(2).若將題設中“矩形ABCD”這一條件改為“菱形ABCD”,
其余條件不變,則四邊形AODE_  ▲  

查看答案和解析>>

同步練習冊答案