【題目】把下列各式分解因式:
(1)
(2)
(3)
(4)
(5)
(6)
【答案】(1)(3a+b)(3a-b);(3)(a-b)2;(3)(a-b+2)(a-b-2);(4)x(x+1)2(x-1)2;(5)(x-8)(x+1);(6)(x-y)(x2-xy-y).
【解析】
(1)利用平方差公式分解即可求得答案;
(2)先提取公因式,再根據(jù)完全平方公式進行二次分解即可求得答案;
(3)利用分組分解法即可求得答案,注意采用一三分組法;
(4)先提取公因式x,再根據(jù)平方差公式進行二次分解,然后再利用完全平方公式進行分解即可求得答案;
(5)利用十字相乘法分解因式即可求得答案;
(6)提取公因式(x-y),即可將原式分解因式.
(1)9a2-b2=(3a+b)(3a-b);
(3)a2ab+b2=(a2-2ab+b2)=(a-b)2;
(3)a2-2ab-4+b2=(a-b)2-4=(a-b+2)(a-b-2);
(4)x(x2+1)2-4x3=x[(x2+1)2-4x2]=x(x2+1+2x)(x2+1-2x)=x(x+1)2(x-1)2;
(5)x2-7x-8=(x-8)(x+1);
(6)x(x-y)2+y(y-x)=(x-y)[x(x-y)-y]=(x-y)(x2-xy-y).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC是⊙O的直徑,過點B作BE⊥AD,垂足為點E,AB平分∠CAE.
(1)判斷BE與⊙O的位置關(guān)系,并說明理由;
(2)若∠ACB=30°,⊙O的半徑為4,請求出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線圖,則符合這一結(jié)果的實驗最有可能的是( 。
A. 在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”
B. 擲一枚質(zhì)地均勻的正六面體骰子,向上一面的點數(shù)是4
C. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃
D. 拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:∠MON=30o,點A1、A2、A3 在射線ON上,點B1、B2、B3…..在射線OM上,△A1B1A2. △A2B2A3、△A3B3A4……均為等邊三角形,若OA1=l,則△A6B6A7 的邊長為【 】
A.6 B.12 C.32 D.64
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某旅行社為吸引市民組團去天水灣風景區(qū)旅游,推出如下收費標準:
如果人數(shù)不超過人,人均旅游費用為元;
如果人數(shù)超過人,每增加人,人均旅游費用降低元,但人均旅游費用不得低于元.
某單位共付給該旅行社旅游費用元,問:該單位這次共有多少員工去天水灣風景區(qū)旅游?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,以為直徑的半圓與交于點,與交于點,連接,過點作,垂足為點.
求證:;
判斷與的位置關(guān)系,并說明理由;
若的直徑為,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】沐陽特產(chǎn)專賣店銷售某種物產(chǎn),其進價為每千克元,若按每千克元出售,則平均每天可售出千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低元,平均每天的銷售量增加千克,若專賣店銷售這種特產(chǎn)平均每天獲利元,且銷量盡可能大,則每千克特產(chǎn)應(yīng)定價為多少元?
解:方法:設(shè)每千克特產(chǎn)應(yīng)降價元,由題意,得方程為: ________;
方法:設(shè)每千克特產(chǎn)降價后定價為元,由題意,得方程為:________.
請你選擇其中一種方法完成解答.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com