如圖,在△ABC中,AC=6,BC=8,AB=10,以AC為直徑作⊙O交AB于點D.
(1)判斷直線BC和⊙O的位置關(guān)系,并說明理由;
(2)求AD的長.
(1)∵AC=6,BC=8,AB=10,
∴AB2=AC2+BC2,∴∠ACB=90°,(2分)
又∵AC是⊙O的直徑,
∴直線BC和⊙O相切.(4分)

(2)由(1)得BC2=BD•BA,
∴82=BD×10,
∴BD=
32
5
,(6分)
∴AD=AB-BD=10-
32
5
=
18
5
.(8分).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O的半徑為3cm,點P到圓心的距離為6cm,經(jīng)過點P引⊙O的兩條切線,這兩條切線的夾角為______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過D作DE⊥AC交BA的延長線于點F,E為垂足.
(1)求證:DF為⊙O的切線;
(2)若AB=6,DF=4,求FA的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的切線,A為切點,AC是⊙O的弦,過O作OH⊥AC于點H,若OH=2,AB=12,BO=13.求:
(1)⊙O的半徑;
(2)sin∠OAC的值;
(3)弦AC的長(結(jié)果保留含有根號的式子).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC中,∠A=60°,BC=6,它的周長為16.若⊙O與BC,AC,AB三邊分別切于E,F(xiàn),D點,則DF的長為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,PC切⊙O于C,AD⊥PD,CM⊥AB,垂足分別為D,M.
(1)求證:CB平分∠PCM;
(2)若∠CBA=60°,求證:△ADM為等邊三角形;
(3)若PO=5,PC=a,⊙O的半徑為r,且a,r是關(guān)于x的方程x2-(2m+1)x+4m=0的兩根,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AC是弦,D是
BC
的中點,過點D作AC的延長線的垂線DP,垂足為P.若PD=12,PC=8,求⊙O的半徑R的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點P是半徑為6的⊙O外一點,過點P作⊙O的割線PAB,點C是⊙O上一點,且PC2=PA•PB.求證:
(1)PC是⊙O的切線;
(2)若sin∠ACB=
5
3
,求弦AB的長;
(3)已知在(2)的條件下,點D是劣弧AB的中點,連接CD交AB于E,若AC:BC=1:3,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在以O為圓心的兩個同心圓中,大圓的弦AB與小圓相切,且AB=8,兩個圓的半徑相差2,那么大圓的直徑為(  )
A.3B.5C.6D.10

查看答案和解析>>

同步練習冊答案