若關(guān)于x的方程x2-4x+m=0.
(1)方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
(2)若方程的一個(gè)根是2+
3
,求m的值及另一個(gè)根.
(1)∵關(guān)于x的方程x2-4x+m=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=(-4)2-4×1×m>0,
即16-4m>0,
∴m<4;

(2)設(shè)另一個(gè)根是x2,得:2+
3
+x2=4,
∴x2=2-
3
,
∵x1•x2=m,
∴m=(2+
3
)(2-
3
)=4-3=1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若方程x2+8x-4=0的兩個(gè)根分別為x1、x2,則
1
x1
+
1
x2
的值為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求方程3x2-4x+k=0的兩實(shí)根之積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知方程x2+2007x+7=0的兩個(gè)根為m、n,則m2+2008m+n2+2008n+2008的值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

當(dāng)m=______時(shí),方程2x2-(m2-4)x=0的兩根互為相反數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知關(guān)于x的方程kx2-4x-2=0有兩個(gè)實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且x12+x22=4,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

a、b為實(shí)數(shù),關(guān)于x的方程|x2+ax+b|=2有三個(gè)不等的實(shí)數(shù)根.
(1)求證:a2-4b-8=0;
(2)若該方程的三個(gè)不等實(shí)根,恰為一個(gè)三角形三內(nèi)角的度數(shù),求證:該三角形必有一個(gè)內(nèi)角60°;
(3)若該方程的三個(gè)不等實(shí)根恰為一直角三角形的三條邊,求a和b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,要設(shè)計(jì)一個(gè)等腰梯形的花壇,花壇上底長(zhǎng)120米,下底長(zhǎng)180米,上下底相距80米,在兩腰中點(diǎn)連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為x米.
(1)用含x的式子表示橫向甬道的面積;
(2)根據(jù)設(shè)計(jì)的要求,甬道的寬不能超過(guò)6米.如果修建甬道的總費(fèi)用(萬(wàn)元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是5.7,花壇其余部分的綠化費(fèi)用為每平方米0.02萬(wàn)元,那么當(dāng)甬道的寬度為多少米時(shí),所建花壇的總費(fèi)用為239萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某種服裝,平均每天可銷售20件,每件盈利44元,若每件降價(jià)1元,則每天可多售5件,如果每天要盈利1600元,設(shè)每件降價(jià)x,所列的方程為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案