【題目】如圖,正方形中,,是的中點(diǎn).將沿對(duì)折至,延長(zhǎng)交于點(diǎn),連接、,則下列結(jié)論正確的有( )個(gè).
(1) (2)
(3)的面積是18 (4)
A. 4B. 3C. 2D. 1
【答案】B
【解析】
①正確,根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△AFE≌Rt△ADE;在直角△ECG中,根據(jù)勾股定理即可求出DE的長(zhǎng);
②正確,根據(jù)翻折變換的性質(zhì)和全等得出∠BAG=∠FAG,∠DAE=∠FAE,即可求出∠EAG=45°;
③錯(cuò)誤,根據(jù) 即可求得結(jié)果;
④正確,作FM∥EC交BC于M,根據(jù)相似三角形的判定和性質(zhì) 可得,求出FM和GM,根據(jù)勾股定理求得FC,即可解決問(wèn)題.
解:①如圖,連接AE,
∵AB=AD=AF,∠D=∠AFE=90°,
在Rt△AFE和Rt△ADE中,
∵ ,
∴Rt△AFE≌Rt△ADE,
∴EF=DE,
設(shè)DE=FE=x,則EC=6-x.
∵G為BC中點(diǎn),BC=6,
∴CG=3,
在Rt△ECG中,根據(jù)勾股定理,得:(6-x)2+9=(x+3)2,
解得x=2.故①正確;
②∵△ABG沿AG折疊得到△AFG,
∴△ABG≌△AFG.
∴∠BAG=∠FAG.
∵△ADE≌△AFE,
∴∠DAE=∠FAE.
∵∠BAD=90°,
∴∠EAG=∠EAF+∠GAF=×90°=45°.
故②正確;
③ ∵△ABG沿AG折疊得到△AFG,
∴△ABG≌△AFG.
∴AF=AB=6,∠AFG=∠B=90°,GF=BG=3,
∵ DE=FE=2,
∴ EG= GF+ FE=5,
∴= ,故③錯(cuò)誤;
(4)作FM∥EC交BC于M,則∠FMC=∠DCM=90°,
∵FM∥EC
∴△GMF∽△GCE,
∴ ,
∵G是BC的中點(diǎn),BC=AB=6,
∴GC=3,
∵GF=3,GE=GF+EF=5,EC=CD-DE=4,
∴FM= ,GM= ,
∴MC= ,CF= = ,
∴ ,
故④正確.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時(shí)出發(fā),設(shè)快車離乙地的距離為y1(km),慢車離乙地的距離為y2(km),慢車行駛時(shí)間為x(h),兩車之間的距離為s(km).y1,y2與x的函數(shù)關(guān)系圖象如圖1所示,s與x的函數(shù)關(guān)系圖象如圖2所示.則下列判斷:①圖1中a=3;②當(dāng)x=h時(shí),兩車相遇;③當(dāng)x=時(shí),兩車相距60km;④圖2中C點(diǎn)坐標(biāo)為(3,180);⑤當(dāng)x=h或h時(shí),兩車相距200km.其中正確的有_____(請(qǐng)寫出所有正確判斷的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線:y=kx+3k與x軸交于A點(diǎn),與拋物線y=+1交于點(diǎn)B、C兩點(diǎn)
(1)若k=1,求點(diǎn)B、C(點(diǎn)B在點(diǎn)C的左邊)的坐標(biāo);
(2)過(guò)B、C分別作x軸的垂線,垂足分別為點(diǎn)D、E,求ADAE的值;
(3)將拋物線y=+1沿直線y=mx+1(m>1)向右平移t個(gè)單位,直線y=mx+1交y軸于S,交新拋物線于MT,N是新拋物線與y軸的交點(diǎn),試探究t為何值時(shí),NT∥x軸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過(guò)C作CD⊥AB于點(diǎn)D,CD交AE于點(diǎn)F,過(guò)C作CG∥AE交BA的延長(zhǎng)線于點(diǎn)G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若sinG=0.6,CF=4,求GA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,是的角平分線,點(diǎn)為的中點(diǎn),連接并延長(zhǎng)到點(diǎn),使,連接,和.
(1)求證:;
(2)判斷并證明四邊形的形狀;
(3)為添加一個(gè)條件______,則四邊形是矩形(填空即可,不必說(shuō)明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小聰和小明沿同一條筆直的馬路同時(shí)從學(xué)校出發(fā)到某圖書館查閱資料,學(xué)校與圖書館的路程是4千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到達(dá)圖書館,圖中折線O-A-B-C和線段OD分別表示兩人離學(xué)校的路程s(千米)與所經(jīng)過(guò)的時(shí)間t(分鐘)之間的函數(shù)關(guān)系,請(qǐng)根據(jù)圖象回答下列問(wèn)題:
(1)小聰在圖書館查閱資料的時(shí)間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘;
(2)請(qǐng)你求出小明離開學(xué)校的路程s(千米)與所經(jīng)過(guò)的時(shí)間t(分鐘)之間的函數(shù)表達(dá)式;
(3)若設(shè)兩人在路上相距不超過(guò)0.4千米時(shí)稱為可以“互相望見”,則小聰和小明可以“互相望見”的時(shí)間共有多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A,B在x軸的正半軸上,反比例函數(shù)y=在第一象限內(nèi)的圖象與直線y=x交于點(diǎn)D,且反比例函數(shù)y=交BC于點(diǎn)E,AD=3.
(1)求D點(diǎn)的坐標(biāo)及反比例函數(shù)的關(guān)系式;
(2)若矩形的面積是24,請(qǐng)寫出△CDE的面積(不需要寫解答過(guò)程).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com