(2013•常德)如圖,已知⊙O是△ABC的外接圓,若∠BOC=100°,則∠BAC=
50°
50°
分析:根據(jù)圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半得:∠BOC=2∠BAC,進(jìn)而可得答案.
解答:解:∵⊙O是△ABC的外接圓,∠BOC=100°,
∴∠BAC=
1
2
∠BOC=
1
2
×100°=50°.
故答案為:50°.
點(diǎn)評(píng):此題考查了圓周角定理,注意掌握在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•常德)如圖,在△ABC中,AD是BC邊上的高,AE是BC邊上的中線(xiàn),∠C=45°,sinB=
13
,AD=1.
(1)求BC的長(zhǎng);
(2)求tan∠DAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•常德)如圖,將長(zhǎng)方形紙片ABCD折疊,使邊DC落在對(duì)角線(xiàn)AC上,折痕為CE,且D點(diǎn)落在對(duì)角線(xiàn)D′處.若AB=3,AD=4,則ED的長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•常德)如圖,已知⊙O是等腰直角三角形ADE的外接圓,∠ADE=90°,延長(zhǎng)ED到C使DC=AD,以AD,DC為鄰邊作正方形ABCD,連接AC,連接BE交AC于點(diǎn)H.求證:
(1)AC是⊙O的切線(xiàn).
(2)HC=2AH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•常德)如圖,已知二次函數(shù)的圖象過(guò)點(diǎn)A(0,-3),B(
3
3
),對(duì)稱(chēng)軸為直線(xiàn)x=-
1
2
,點(diǎn)P是拋物線(xiàn)上的一動(dòng)點(diǎn),過(guò)點(diǎn)P分別作PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,在四邊形PMON上分別截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函數(shù)的解析式;
(2)求證:以C、D、E、F為頂點(diǎn)的四邊形CDEF是平行四邊形;
(3)在拋物線(xiàn)上是否存在這樣的點(diǎn)P,使四邊形CDEF為矩形?若存在,請(qǐng)求出所有符合條件的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案