在矩形紙片ABCD中,AB=6,BC=8,
 
(1)將矩形紙片沿BD折疊,使點(diǎn)A落在點(diǎn)E處(如圖①),設(shè)DE和BC相交于點(diǎn)F,試說明△BDF為等腰三角形,并求BF的長;
(2)將矩形紙片折疊,使B與D重合(如圖②)求折痕GH的長。
(1)BF的長為;(2)GH的長為

試題分析:(1)設(shè)BF=x,則FC=16-x,根據(jù)翻折的性質(zhì)可得∠ADB=EDB,再有∠ADB=∠DBC,即可得到∠DBC=∠BDE,從而可得DF=BF=x,即△BDF為等腰三角形,在Rt△DCF中,根據(jù)勾股定理即可列方程求解;
(2)過點(diǎn)G作GO垂直于BC,根據(jù)翻折的性質(zhì)可得DH=BH,再根據(jù)矩形的性質(zhì)結(jié)合勾股定理列方程求得HC的長,證得△DHC≌△DGF,即可得到FG=AG=HC=,再根據(jù)勾股定理即可求得結(jié)果.
(1)設(shè)BF=x,則FC=16-x,
∵BD為折痕,
∴∠ADB=EDB,
又∠ADB=∠DBC,
∴∠DBC=∠BDE,
∴DF=BF=x,即△BDF為等腰三角形
Rt△DCF中,
x2=(8-x)2+62,
解得x=
(2)過點(diǎn)G作GO垂直于BC

因?yàn)檎郫B,所以DH=BH,
又因?yàn)榫匦蜛BCD所以利用勾股定理得,
HC2+DC2=BH2
x2+6×6=(8-x)2,
解得
∵∠FDG+∠ADH=90°,∠HDC+∠ADH=90°,
∴∠HDC=∠FDG,
在△DHC和△DGF中,
∵∠F=∠C,F(xiàn)D=CD,∠FDG=∠HDC
∴△DHC≌△DGF
∴FG=AG=HC=,
所以O(shè)H=5.5,
HO2+GO2=GH2,
5.5×5.5+6×6=GH2,
解得GH=
點(diǎn)評:找準(zhǔn)相等的量,結(jié)合勾股定理進(jìn)行解題是做這類題目的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

小明上午在理發(fā)店理發(fā)時(shí),從鏡子內(nèi)看到背后墻上普通時(shí)鐘的時(shí)針與分針的 位置如圖所示,此時(shí)時(shí)間是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖案中是軸對稱圖形的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分6分)
在平面直角坐標(biāo)系中,△ABC的位置如圖所示,請解答下列問題:

(1)將△ABC向下平移3個(gè)單位長度,得到△ABC,畫出平移后的△ABC;(2)將△ABC繞點(diǎn)O旋轉(zhuǎn)180°,得到△ABC,畫出旋轉(zhuǎn)后的△ABC;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

小明從鏡子中看到對面電子鐘示數(shù)如圖所示,這時(shí)的時(shí)刻應(yīng)是(   )
12:01
A.21:10B.10:21
C.10:51D.12:01

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長為1的小正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別為(-4,4)、(-6,2).請按要求完成下列各題:

⑴ 把△AOB向上平移4個(gè)單位后得到對應(yīng)的△A1OB1,則點(diǎn)A1、B1的坐標(biāo)分別是             ;
⑵ 將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2OB2,在旋轉(zhuǎn)過程中線段AO所掃過的面積為              ;
⑶ 點(diǎn)P1,P2,P3,P4,P5是△AOB邊上的5個(gè)格點(diǎn),畫一個(gè)三角形,使它的三個(gè)頂點(diǎn)為P1,P2,P3,P4,P5中的3個(gè)格點(diǎn)并且與△AOB相似.(要求:在圖中聯(lián)結(jié)相應(yīng)線段,不用說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

圖1、圖2分別是的正方形網(wǎng)格,,每個(gè)小方格都是邊長為1的正方形,點(diǎn)是方格紙的兩個(gè)格點(diǎn)(即正方形的頂點(diǎn)).

(1)在圖1中確定格點(diǎn),并畫出,使其是面積為1個(gè)平方單位的鈍角三角形.
(2)在圖2中確定格點(diǎn),并畫出,使其是面積為1個(gè)平方單位的軸對稱三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)在長度單位為1的正方形網(wǎng)格中,

①將△ABC平移,使點(diǎn)C與點(diǎn)C′重合,做出平移后的△ABC′,并計(jì)算平移的距離。
②將△ABC′繞點(diǎn)C′順時(shí)針方向旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△BCA″,并計(jì)算BB″的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將一矩形紙條,按如圖所示折疊,已知∠FEC=63°,則∠AGC′=___

查看答案和解析>>

同步練習(xí)冊答案