【題目】某校組織九年級學(xué)生參加漢字聽寫大賽,并隨機(jī)抽取部分學(xué)生成績作為樣本進(jìn)行分析,繪制成如下的統(tǒng)計表:

成績x/

頻數(shù)

頻率

1

x<60

2

0.04

2

60≤x<70

6

0.12

3

70≤x<80

9

b

4

80≤x<90

a

0.36

5

90≤x≤100

15

0.30

請根據(jù)所給信息,解答下列問題:

(1)a______,b______

(2)請補(bǔ)全頻數(shù)分布直方圖;

(3)樣本中,部分學(xué)生成績的中位數(shù)落在第_______;

(4)已知該年級有400名學(xué)生參加這次比賽,若成績在90分以上(含90分)的為優(yōu),估計該年級成績?yōu)閮?yōu)的有多少人?

【答案】(1)18 0.18 (2)見解析 (3)4 (4)120

【解析】

根據(jù)統(tǒng)計數(shù)據(jù)知識即可解題.

(1)由頻率分布表可知抽取總?cè)藬?shù)==50,

∴a=50-2-6-9-15=18,b=1-0.04-0.12-0.36-0.30=0.18

(2)頻率分布直方圖如下圖:

(3)50,

中位數(shù)是的第25人和26人的平均數(shù),而第25人和26人都出現(xiàn)在第4.

(4)400=120

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中, ADBC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且AE=AB

1)若∠BAE40°,求∠C的度數(shù);

2)若ABC周長26cm,AC10cm,求DC長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖1:在四邊形ABCD,AB=AD,BAD=120 ,B=ADC=90°.E、F分別是 BC,CD 上的點(diǎn)。且∠EAF=60° . 探究圖中線段BE,EF,FD 之間的數(shù)量關(guān)系。 小王同學(xué)探究此問題的方法是,延長 FD 到點(diǎn) G,使 DG=BE,連結(jié) AG,先證明ABE≌△ADG, 再證明AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是_________

探索延伸:如圖2,若四邊形ABCD,AB=AD,B+D=180° .E,F 分別是 BC,CD 上的點(diǎn),且∠EAF=BAD,上述結(jié)論是否仍然成立,并說明理由;

實(shí)際應(yīng)用:如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°A,艦艇乙在指揮中心南偏東 70°B,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以55 海里/小時的速度前進(jìn),艦艇乙沿北偏東 50°的方向以 75 海里/小時的速度前進(jìn)2小時后, 指揮中心觀測到甲、乙兩艦艇分別到達(dá) E,F ,且兩艦艇之間的夾角為70° ,試求此時兩艦 艇之間的距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,∠ACB30°,AB2cm,E、F分別是ABAC的中點(diǎn),動點(diǎn)P從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動,速度為1cm/s,同時動點(diǎn)Q從點(diǎn)B出發(fā),沿BF方向勻速運(yùn)動,速度為2cm/s,連接PQ,設(shè)運(yùn)動時間為ts0t1),則當(dāng)t___時,PQF為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,E,F分別是AD,CD上兩點(diǎn),BEAF于點(diǎn)G,且DE=CF

1)寫出BEAF之間的關(guān)系,并證明你的結(jié)論;

2)如圖2,若AB=2,點(diǎn)EAD的中點(diǎn),連接GD,試證明GD是∠EGF的角平分線,并求出GD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關(guān)系,其部分圖象如圖所示.

(1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫定義域)

(2)已知當(dāng)油箱中的剩余油量為8升時,該汽車會開始提示加油,在此次行駛過程中,行駛了500千米時,司機(jī)發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)敘述三角形中位線定理,并運(yùn)用平行四邊形的知識證明;

2)運(yùn)用三角形中位線的知識解決如下問題:如圖1,在四邊形ABCD中,ADBC,EF分別是AB,CD的中點(diǎn),求證:EFAD+BC

3)如圖2,在四邊形ABCD中,ADBC,∠B900AD3,BC4,CD7,EAB的中點(diǎn),直接寫出點(diǎn)ECD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張明和李強(qiáng)兩名運(yùn)動愛好者周末相約進(jìn)行跑步鍛煉,周日早上6點(diǎn),張明和李強(qiáng)同時從家出發(fā),分別騎自行車和步行到離家距離分別為4.5千米和1.2千米的體育場入口匯合,結(jié)果同時到達(dá),且張明每分鐘比李強(qiáng)每分鐘多行220米,

1)求張明和李強(qiáng)的速度分別是多少米/分?

2)兩人到達(dá)體育場后約定先跑6千米再休息,李強(qiáng)的跑步速度是張明跑步速度的m倍,兩人在同起點(diǎn),同時出發(fā),結(jié)果李強(qiáng)先到目的地n分鐘.

①當(dāng)m1.2,n5時,求李強(qiáng)跑了多少分鐘?

②直接寫出張明的跑步速度為多少米/分(直接用含mn的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1), 已知△ABC, BAC=900, AB=AC, AE是過A的一條直線, B、CA、E的異側(cè), BDAED, CEAEE

1)試說明: BD=DE+CE.

2)若直線AEA點(diǎn)旋轉(zhuǎn)到圖(2)位置時(BD<CE), 其余條件不變, BDDECE的關(guān)系如何? 為什么?

3)若直線AEA點(diǎn)旋轉(zhuǎn)到圖(3)位置時(BD>CE), 其余條件不變, BDDE、CE的關(guān)系如何? 直接寫出結(jié)果, 不需說明.

查看答案和解析>>

同步練習(xí)冊答案