【題目】(閱讀理解)對于任意正實(shí)數(shù)a、b,
∵(﹣)2≥0,
∴a﹣2+b≥0,
∴a+b≥2,(只有當(dāng)a=b時(shí),a+b等于2).
(1)(獲得結(jié)論)在a+b≥2(a、b均為正實(shí)數(shù))中,若ab為定值p,
則a+b≥2,只有當(dāng)a=b時(shí),a+b有最小值2.
根據(jù)上述內(nèi)容,回答下列問題:若m>0,只有當(dāng)m= 時(shí),m+有最小值 .
(2)(探索應(yīng)用)已知點(diǎn)Q(﹣3,﹣4)是雙曲線y=上一點(diǎn),過Q作QA⊥x軸于點(diǎn)A,作QB⊥y軸于點(diǎn)B.點(diǎn)P為雙曲線y=(x>0)上任意一點(diǎn),連接PA,PB,求四邊形AQBP的面積的最小值.
【答案】(1)2,4;(2)24.
【解析】
(1)根據(jù)閱材料可得,當(dāng)m=時(shí),m+取得最大值,據(jù)此即可求解;
(2)連接PQ,設(shè)P(x,),根據(jù)根據(jù)四邊形AQBP的面積=△AQP的面積+△QBP的面積,從而利用x表示出四邊形的面積,利用閱讀材料中介紹的不等式的性質(zhì)即可求解.
(1)根據(jù)題意得當(dāng)m=時(shí),m=2,此時(shí)m+=4.
故答案是:2,4;
(2)連接PQ,設(shè)P(x,),
∴S四邊形AQBP=×4(x+3)+×3(+4)
=2x++12≥12+12=24.
∴最小值為24.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工匠制作某種金屬工具要進(jìn)行材料煅燒和鍛造兩個(gè)工序,即需要將材料燒到800℃,然后停止煅燒進(jìn)行鍛造操作,經(jīng)過8min時(shí),材料溫度降為600℃.煅燒時(shí)溫度y(℃)與時(shí)間x(min)成一次函數(shù)關(guān)系;鍛造時(shí),溫度y(℃)與時(shí)間x(min)成反比例函數(shù)關(guān)系(如圖).已知該材料初始溫度是32℃.
(1)分別求出材料煅燒和鍛造時(shí)y與x的函數(shù)關(guān)系式,并且寫出自變量x的取值范圍;
(2)根據(jù)工藝要求,當(dāng)材料溫度低于480℃時(shí),須停止操作.那么鍛造的操作時(shí)間有多長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】結(jié)合數(shù)軸與絕對值的知識(shí)回答下列問題:
(1)數(shù)軸上表示4和1的兩點(diǎn)之間的距離是 ;表示-3和2兩點(diǎn)之間的距離是 ;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于|m-n|.
(2)如果|x+1|=3,那么x= ;
(3)若|a-3|=2,|b+2|=1,且數(shù)a、b在數(shù)軸上表示的數(shù)分別是點(diǎn)A、點(diǎn)B,則A、B 兩點(diǎn)間的最大距離是 .
(4)若數(shù)軸上表示a的點(diǎn)位于-4與2之間,則|a+4|+|a-2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達(dá)小彬家,繼續(xù)向東跑了1.5km到達(dá)小紅家,然后又向西跑了4.5km到達(dá)學(xué)校,最后又向東,跑回到自己家.
(1)以小明家為原點(diǎn),以向東為正方向,用1個(gè)單位長度表示1km,在圖中的數(shù)軸上,分別用點(diǎn)A表示出小彬家,用點(diǎn)B表示出小紅家,用點(diǎn)C表示出學(xué)校的位置;
(2)求小彬家與學(xué)校之間的距離;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組開展以下折紙活動(dòng):①對折矩形紙片ABCD,使AD和BC重合,得到折痕EF,把紙片展開;②再一次折疊紙片,使點(diǎn)A落在EF上,并使折痕經(jīng)過點(diǎn)B,得到折痕BM,同時(shí)得到線段BN.觀察探究可以得到∠NBC的度數(shù)是( 。
A. 20°B. 25°C. 30°D. 35°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形ABCD中,點(diǎn)E是BC邊上一點(diǎn),且BE:EC=2:1,AE與BD交于點(diǎn)F,則△AFD與四邊形DFEC的面積之比是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、
B(0,1)、C(d,2)。
(1)求d的值;
(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點(diǎn)的對應(yīng)點(diǎn)B′、C′正好落在某反比例函數(shù)圖
像上。請求出這個(gè)反比例函數(shù)和此時(shí)的直線B′C′的解析式;
(3)在(2)的條件下,直線B′C′交y軸于點(diǎn)G。問是否存在x軸上的點(diǎn)M和反比例函數(shù)圖像上的點(diǎn)P,
使得四邊形PGMC′是平行四邊形。如果存在,請求出點(diǎn)M和點(diǎn)P的坐標(biāo);如果不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com