已知AB是⊙O的直徑,直線(xiàn)BC與⊙O相切于點(diǎn)B,∠ABC的平分線(xiàn)BD交⊙O于點(diǎn)D,AD的延長(zhǎng)線(xiàn)交BC于點(diǎn)C.
(1)求∠BAC的度數(shù);
(2)求證:AD=CD.
【答案】分析:(1)由AB是⊙O的直徑,易證得∠ADB=90°,又由∠ABC的平分線(xiàn)BD交⊙O于點(diǎn)D,易證得△ABD≌△CBD,即可得△ABC是等腰直角三角形,即可求得∠BAC的度數(shù);
(2)由AB=CB,BD⊥AC,利用三線(xiàn)合一的知識(shí),即可證得AD=CD.
解答:解:(1)∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠CDB=90°,BD⊥AC,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△ABD和△CBD中,

∴△ABD≌△CBD(ASA),
∴AB=CB,
∵直線(xiàn)BC與⊙O相切于點(diǎn)B,
∴∠ABC=90°,
∴∠BAC=∠C=45°;

(2)證明:∵AB=CB,BD⊥AC,
∴AD=CD.
點(diǎn)評(píng):此題考查了切線(xiàn)的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的判定與性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,∠CAB=30°,過(guò)點(diǎn)C的⊙O的切線(xiàn)交AB延長(zhǎng)線(xiàn)于D,若OD=4
3
,那么弦AC長(zhǎng)等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,過(guò)點(diǎn)O作弦BC的平行線(xiàn),交過(guò)點(diǎn)A的切線(xiàn)AP于點(diǎn)P,連接AC.
(1)求證:△ABC∽△POA;
(2)若OB=2,OP=
72
,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,直線(xiàn)CD與AB的延長(zhǎng)線(xiàn)交于點(diǎn)D,∠COB=2∠DCB.精英家教網(wǎng)
(1)求證:CD是⊙O的切線(xiàn);
(2)點(diǎn)E是
AB
的中點(diǎn),CE交AB于點(diǎn)F,若AB=4,求EF•EC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,
EC
=
CB
.給出下列結(jié)論:
①BA⊥DA;②OC∥AE;③OD⊥AC;④∠EAC=
1
4
∠EOB.
其中正確的結(jié)論有
①②④
①②④
.(把你認(rèn)為正確的結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知AB是⊙O的直徑,弧AC的度數(shù)是30°.如果⊙O的直徑為4,那么AC2等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案