【題目】(題文)如圖,在△ABC中,AB=BC=4,AO=BO,P是射線(xiàn)CO上的一個(gè)動(dòng)點(diǎn),∠AOC=60°,則當(dāng)△PAB為直角三角形時(shí),AP的長(zhǎng)為________________(提示:直角三角形斜邊上的中線(xiàn)等于斜邊的一半).
【答案】
【解析】利用分類(lèi)討論,當(dāng)∠ABP=90°時(shí),如圖2,由對(duì)頂角的性質(zhì)可得∠AOC=∠BOP=60°,易得∠BPO=30°,易得BP的長(zhǎng),利用勾股定理可得AP的長(zhǎng);當(dāng)∠APB=90°時(shí),分兩種情況討論,情況一:如圖1,利用直角三角形斜邊的中線(xiàn)等于斜邊的一半得出PO=BO,易得△BOP為等邊三角形,利用銳角三角函數(shù)可得AP的長(zhǎng);易得BP,利用勾股定理可得AP的長(zhǎng);情況二:如圖3,利用直角三角形斜邊的中線(xiàn)等于斜邊的一半可得結(jié)論.
當(dāng)∠ABP=90°時(shí)(如圖2).
∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,
當(dāng)∠APB=90°時(shí),分兩種情況討論:
情況一:(如圖1).
∵AO=BO,∴PO=BO.
∵∠AOC=60°,∴∠BOP=60°,∴△BOP為等邊三角形.
∵AB=BC=4,∴AP=ABsin60°=4×=2;
情況二:如圖3.
∵AO=BO,∠APB=90°,∴PO=AO.
∵∠AOC=60°,∴△AOP為等邊三角形,∴AP=AO=2.
故答案為:2或2或2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】初中學(xué)生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者極為關(guān)注的一個(gè)問(wèn)題.為此市教育局對(duì)本市部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):喜歡;B級(jí):不太喜歡;C級(jí):不喜歡),并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該市近80000名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 在△ABC中,AC=3、AB=4、BC=5, P為BC上一動(dòng)點(diǎn),PG⊥AC于點(diǎn)G,PH⊥AB
于點(diǎn)H,M是GH的中點(diǎn),P在運(yùn)動(dòng)過(guò)程中PM的最小值為( )
A. 2.4 B. 1.4
C. 1.3 D. 1.2
【答案】D
【解析】分析: 由AC=3、AB=4、BC=5,得AC2+AB2=BC2,則∠A=90°,再結(jié)合PG⊥AC,PH⊥AB,可證四邊形AGPH是矩形;連接AP,可知當(dāng)AP⊥BC時(shí)AP最短,結(jié)合矩形的兩對(duì)角線(xiàn)相等和面積法,求出GH的值,
詳解:∵AC=3、AB=4、BC=5,
∴AC2=9,AB2=16,BC2=25,
∴AC2+AB2=BC2,
∴∠A=90°.
∵PG⊥AC,PH⊥AB,
∴∠AGP=∠AHP=90° ,
∴四邊形AGPH是矩形.
連接AP,
∴GH=AP.
∵當(dāng)AP⊥BC時(shí),AP最短,
∴3×4=5AP,
∴AP=,
∴PM的最小值為1.2.
故選D.
點(diǎn)睛: 本題考查了勾股定理的逆定理,矩形的判定與性質(zhì),垂線(xiàn)段最短,面積法求線(xiàn)段的長(zhǎng),需結(jié)合矩形的判定方法,矩形的性質(zhì)以及三角形面積的知識(shí)求解;確定出點(diǎn)P的位置是解答本題的關(guān)鍵.
【題型】單選題
【結(jié)束】
18
【題目】計(jì)算:
(1) (2)
(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知∠AOB=140°,∠AOC=30°,OE是∠AOB內(nèi)部的一條射線(xiàn),且OF平分∠AOE.
(1)若∠EOB=30°,則∠COF= ;
(2)若∠COF=20°,則∠EOB= ;
(3)若∠COF=n°,則∠EOB= (用含n的式子表示).
(4)當(dāng)射線(xiàn)OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖2的位置時(shí),請(qǐng)把圖補(bǔ)充完整;此時(shí),∠COF與∠EOB有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1、2、3,…是由花盆擺成的圖案,圖1中有1盆花,圖2中有7盆花,圖3中有19盆花,……
根據(jù)圖中花盆擺放的規(guī)律,圖4中,應(yīng)該有__________盆花;第n個(gè)圖形中應(yīng)該有_________盆花。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知梯形ABCD中,AD∥BC,AB=AD(如圖所示).
(1)在下圖中,用尺規(guī)作∠BAD的平分線(xiàn)AE交BC于點(diǎn)E,連接DE(保留作圖痕跡,不寫(xiě)作法),并證明四邊形ABED是菱形;
(2)若∠ABC=60°,EC=2BE.求證:ED⊥DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖1,點(diǎn)M,N把線(xiàn)段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個(gè)直角三角形,則稱(chēng)點(diǎn)M,N是線(xiàn)段AB的勾股分割點(diǎn).
請(qǐng)解決下列問(wèn)題:
(1)已知點(diǎn)M,N是線(xiàn)段AB的勾股分割點(diǎn),且BN>MN>AM.若AM=2,MN=3,求BN的長(zhǎng);
(2)如圖2,若點(diǎn)F、M、N、G分別是AB、AD、AE、AC邊上的中點(diǎn),點(diǎn)D,E是線(xiàn)段BC的勾股分割點(diǎn),且EC>DE>BD,求證:點(diǎn)M,N是線(xiàn)段FG的勾股分割點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC 在平面直角坐標(biāo)系 xOy 中的位置如圖所示.
(1)作△ABC 關(guān)于點(diǎn) O 成中心對(duì)稱(chēng)的△A1B1C1;
(2)作出將△A1B1C1向右平移 3 個(gè)單位,再向上平移4 個(gè)單位后的△A2B2C2;
(3)請(qǐng)直接寫(xiě)出點(diǎn) B2 關(guān)于 x 軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了預(yù)防“甲型H1N1”,某校對(duì)教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣每立方米的含藥量為6mg,請(qǐng)你根據(jù)題中提供的信息,解答下列問(wèn)題:
(1)藥物燃燒時(shí),求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關(guān)系式呢?
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí),生方可進(jìn)教室,那么從消毒開(kāi)始,至少需要幾分鐘后,生才能進(jìn)入教室?
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不低于10min時(shí),才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com