【題目】等腰三角形的腰長是6,則底邊長3,周長為______________________。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】與點(diǎn) P(3,4)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為______;與點(diǎn)Q(-3,4)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)M(1,2)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)為 ( )。
A. (—1,2) B. (-1,-2) C. (1,-2) D. (2,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.
理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD()
∴∠2=∠CGD(等量代換)
∴CE∥BF()
∴∠=∠BFD()
又∵∠B=∠C(已 知)
∴(等量代換)
∴AB∥CD()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△OAB如圖所示放置在平面直角坐標(biāo)系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)B旋轉(zhuǎn)到點(diǎn)C的位置,一條拋物線正好經(jīng)過點(diǎn)O,C,A三點(diǎn).
(1)求該拋物線的解析式;
(2)在x軸上方的拋物線上有一動(dòng)點(diǎn)P,過點(diǎn)P作x軸的平行線交拋物線于點(diǎn)M,分別過點(diǎn)P,點(diǎn)M作x軸的垂線,交x軸于E,F(xiàn)兩點(diǎn),問:四邊形PEFM的周長是否有最大值?如果有,請求出最值,并寫出解答過程;如果沒有,請說明理由.
(3)如果x軸上有一動(dòng)點(diǎn)H,在拋物線上是否存在點(diǎn)N,使O(原點(diǎn))、C、H、N四點(diǎn)構(gòu)成以O(shè)C為一邊的平行四邊形?若存在,求出N點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算中正確的是( )
A.(ab2)3=ab6
B.(3xy)3=9x3y3
C.(﹣2a2)2=4a4
D.(ab)3=ab3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小剛進(jìn)行賽跑訓(xùn)練,他們選擇了一個(gè)土坡,按同一路線同時(shí)出發(fā),從坡腳跑到坡頂再原路返回坡腳.他們倆上坡的平均速度不同,下坡的平均速度則是各自上坡平均速度的1. 5倍.設(shè)兩人出發(fā)x min后距出發(fā)點(diǎn)的距離為y m.圖中折線段OBA表示小明在整個(gè)訓(xùn)練中y與x的函數(shù)關(guān)系,其中點(diǎn)A在x軸上,點(diǎn)B坐標(biāo)為(2,480).
(1)點(diǎn)B所表示的實(shí)際意義是 ;
(2)求出AB所在直線的函數(shù)關(guān)系式;
(3)如果小剛上坡平均速度是小明上坡平均速度的一半,那么兩人出發(fā)后多長時(shí)間第一次相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初一年級(jí)有500名同學(xué),將他們的身高(單位:cm)數(shù)據(jù)繪制成頻率分布直方圖(如圖),若要從身高在 , , 三組內(nèi)的學(xué)生中,用分層抽樣的方法選取30人參加一項(xiàng)活動(dòng),則從身高在 內(nèi)的學(xué)生中選取的人數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com