精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,∠BAC=90°,∠B=45°,BC=10,過點AAD∥BC,且點D在點A的右側.點P從點A出發(fā)沿射線AD方向以每秒1個單位的速度運動,同時點Q從點C出發(fā)沿射線CB方向以每秒2個單位的速度運動,在線段QC上取點E,使得QE=2,連結PE,設點P的運動時間為t秒.

(1)若PE⊥BC,求BQ的長;

(2)請問是否存在t的值,使以A,B,E,P為頂點的四邊形為平行四邊形?若存在,求出t的值;若不存在,請說明理由。

【答案】(1) BQ= ;(2)存在,t=4,詳見解析.

【解析】試題分析

(1)AM⊥BCM,PE交AC于點N,則△APN和△CEN是等腰直角三角形,把CE的長在PE上和在CM上用關于t的式子表示,即可得到關于t的方程,從而求解;

(2)根據AP=BE,列出關于t的方程求解.

試題解析

(1)作AM⊥BCM,如圖所示:

∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,

∴AB=AC,∴BM=CM,∴AM=BC=5,

∵AD∥BC,∴∠PAN=∠C=45°,

∵PE⊥BC,∴PE=AM=5,PE⊥AD,

∴△APN△CEN是等腰直角三角形,

∴PN=AP=t,CE=NE=5-t,

∵CE=CQ-QE=2t-2,∴5-t=2t-2,

解得:t=,BQ=BC-CQ=10-2× = ;

(2)存在,t=4;理由如下:

若以A,B,E,P為頂點的四邊形為平行四邊形,

AP=BE,

∴t=10-2t+2,解得:t=4,

存在t的值,使以A,B,E,P為頂點的四邊形為平行四邊形,t=4.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD的對角線AC的垂直平分線與邊AD、BC分別相交于點E、F.

求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】浠水縣商場某柜臺銷售每臺進價分別為160元、120元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:

銷售時段

銷售數量

銷售收入

A種型號

B種型號

第一周

3

4

1200

第二周

5

6

1900

(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)

(1)求A、B兩種型號的電風扇的銷售單價;

(2)若商場準備用不多于7500元的金額再采購這兩種型號的電風扇共50臺,求A種型號的電風扇最多能采購多少臺?

(3)在(2)的條件下,商場銷售完這50臺電風扇能否實現(xiàn)利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】地表以下巖層的溫度T(℃)隨著所處的深度h(km)的變化而變化,Th之間在一定范圍內近似地成一次函數關系.

(1)根據下表,求T(℃)h(km)之間的函數關系式;

溫度T(℃)

90

160

300

深度h(km)

2

4

8

(2)當巖層溫度達到1770℃時,巖層所處的深度為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中考體育測試滿分為40分,某校九年級進行了中考體育模擬測試,隨機抽取了部分學生的考試成績進行統(tǒng)計分析,并把分析結果繪制成如下兩幅統(tǒng)計圖.試根據統(tǒng)計圖中提供的數據,回答下列問題:
(1)抽取的樣本中,成績?yōu)?9分的人數有人;
(2)抽取的樣本中,考試成績的中位數是分,眾數是分;
(3)若該校九年級共有500名學生,試根據這次模擬測試成績估計該校九年級將有多少名學生能得到滿分?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2013年6月,某中學結合廣西中小學閱讀素養(yǎng)評估活動,以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調查,收集整理數據后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據圖1和圖2提供的信息,解答下列問題:

(1)在這次抽樣調查中,一共調查了多少名學生?

(2)請把折線統(tǒng)計圖(圖1)補充完整;

(3)求出扇形統(tǒng)計圖(圖2)中,體育部分所對應的圓心角的度數;

(4)如果這所中學共有學生1800名,那么請你估計最喜愛科普類書籍的學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠ABC=∠BAD,添加下列條件還不能判定△ABC≌△BAD的是( )

A.AC=BD
B.∠CAB=∠DBA
C.∠C=∠D
D.BC=AD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學為了綠化校園,計劃購買一批榕樹和香樟樹,經市場調查,榕樹的單價比香樟樹少20,購買3棵榕樹和2棵香樟樹共需340.

(1)榕樹和香樟樹的單價各是多少?

(2)根據學校實際情況,需購買兩種樹苗共150,總費用不超過10840,且購買香樟樹的棵數不少于榕樹的1.5,請你算算該校本次購買榕樹和香樟樹共有哪幾種方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,點EBC邊上一點,連接AE,把B沿AE折疊,使點B落在點B處,當CEB為直角三角形時,BE的長為      

查看答案和解析>>

同步練習冊答案