【題目】如圖,在小正方形的邊長均為l的方格紙中,有線段AB,BC.點A,B,C均在小正方形的頂點上.
(1)在圖1中畫出四邊形ABCD,四邊形ABCD是軸對稱圖形,點D在小正方形的項點上:
(2)在圖2中畫四邊形ABCE,四邊形ABCE不是軸對稱圖形,點E在小正方形的項點上,∠AEC=90°,EC>EA;直接寫出四邊形ABCE的面積為________.
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
問題情境
如圖1,和均為等邊三角形,點,,在同一條直線上,連接;
探究發(fā)現(xiàn)
(1)善思組發(fā)現(xiàn):,請你幫他們寫出推理過程;
(2)鉆研組受善思組的啟發(fā),求出了度數(shù),請直接寫出等于______度;
(3)奮進組在前面兩組的基礎上又探索出了與的位置關系為______(請直接寫出結果);
拓展探究
(4)如圖2,和均為等腰直角三角形,,點,,在同一條直線上,為中邊上的高,連接,試探究,,之間有怎樣的數(shù)量關系.
創(chuàng)新組類比善思組的發(fā)現(xiàn),很快證出,進而得出.請你寫出,,之間的數(shù)量關系并幫創(chuàng)新組完成后續(xù)的證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示, 在平面直角坐標系中, 邊長為的正方形的邊在軸上, 交軸于點,一次函數(shù)的圖像經(jīng)過點,且與線段始終有交點(含端點),若,則的值可能為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與x軸交于點A,B(1,0),與軸交于點C(0,3),對稱軸為直線.
(1)求拋物線的解析式及點A的坐標;
(2)在對稱軸上是否存在一點M,使得△BCM周長最小?若存在,求出△BCM周長;若不存在,請說明理由;
(3)若點P是拋物線上一動點,從點C沿拋物線向點A運動,過點P作PD//軸,交AC于點D,當△ADP是直角三角形時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在正方形ABCD中,點E是AB邊上的一個動點(點E與點A,B不重合),連接CE,過點B作于點G,交AD于點F.
(1)求證:;
(2)如圖(2),當點E運動到AB的中點時,連接DG,求證:;
(3)如圖(3),在(2)的條件下,過點C作于點H,分別交AD,BF于點M,N,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了幫助我市一名貧困學生,某校組織捐款,現(xiàn)從全校所有學生的捐款數(shù)額中隨機抽取10名學生的捐款數(shù)統(tǒng)計如下表:
捐款金額/元 | 20 | 30 | 50 | 90 |
人數(shù) | 2 | 4 | 3 | 1 |
則下列說法正確的是( 。
A. 10名學生是總體的一個樣本
B. 中位數(shù)是40
C. 眾數(shù)是90
D. 方差是400
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2014河南22題)
(1)問題發(fā)現(xiàn)
如圖①,和均為等邊三角形,點A、D、E在同一條直線上,連接BE;
填空:
①的度數(shù)為__________;
②線段AD、BE之間的數(shù)量關系為__________.
(2)拓展探究
如圖②,和均為等腰直角三角形,,點A、D、E在同一條直線上,CM為中DE邊上的高,連接BE.請判斷的度數(shù)及線段CM、AE、BE之間的數(shù)量關系,并說明理由;
(3)解決問題
如圖③,在正方形ABCD中,,若點P滿足,且,請直接寫出點A到BP的距離.
圖① 圖② 圖③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司經(jīng)過市場調查,發(fā)現(xiàn)某種運動服的銷量與售價是一次函數(shù)關系,具體信息如表:
已知該運動服的進價為每件150元.
(1)售價為x元,月銷量為y件.
①求y關于x的函數(shù)關系式:
②若銷售該運動服的月利潤為w元,求w關于x的函數(shù)關系式,并求月利潤最大時的售價;
(2)由于運動服進價降低了a元,商家決定回饋顧客,打折銷售,這時月銷量與調整后的售價仍滿足(1)中函數(shù)關系式.結果發(fā)現(xiàn),此時月利潤最大時的售價比調整前月利潤最大時的售價低15元,則a的值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com