(2013•南京)已知如圖所示的圖形的面積為24,根據(jù)圖中的條件,可列出方程:
(x+1)2=25
(x+1)2=25
分析:此圖形的面積等于兩個(gè)正方形的面積的差,據(jù)此可以列出方程.
解答:解:根據(jù)題意得:(x+1)2-1=24,
即:(x+1)2=25.
故答案為:(x+1)2=25.
點(diǎn)評(píng):本題考查了由實(shí)際問(wèn)題抽象出一元二次方程,解題的關(guān)鍵是明確題目中的不規(guī)則圖形的面積計(jì)算方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南京)如圖,在梯形ABCD中,AD∥BC,AB=DC,AC與BD相交于P.已知A(2,3),B(1,1),D(4,3),則點(diǎn)P的坐標(biāo)為(
3
3
,
7
3
7
3
).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南京)已知不等臂蹺蹺板AB長(zhǎng)4m.如圖①,當(dāng)AB的一端A碰到地面上時(shí),AB與地面的夾角為α;如圖②,當(dāng)AB的另一端B碰到地面時(shí),AB與地面的夾角為β.求蹺蹺板AB的支撐點(diǎn)O到地面的高度OH.(用含α,β的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南京)已知二次函數(shù)y=a(x-m)2-a(x-m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個(gè)公共點(diǎn);
(2)設(shè)該函數(shù)的圖象的頂點(diǎn)為C,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)D.
①當(dāng)△ABC的面積等于1時(shí),求a的值;
②當(dāng)△ABC的面積與△ABD的面積相等時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南京二模)在?ABCD中,AD=6,∠ABC=60°,點(diǎn)E在邊BC上,過(guò)點(diǎn)E作直線EF⊥AB,垂足為點(diǎn)F,EF與DC的延長(zhǎng)線相交于點(diǎn)H.
(1)如圖1,已知點(diǎn)E是BC的中點(diǎn),求證:以E為圓心、EF為半徑的圓與直線CD相切;
(2)如圖2,已知點(diǎn)E不是BC的中點(diǎn),連接BH、CF,求梯形BHCF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案