精英家教網 > 初中數學 > 題目詳情
如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,且AB>AD+BC,AB是⊙O的直徑,則直線CD與⊙O的位置關系為(   )
A.相離B.相切C.相交D.無法確定
C.

試題分析:作OE⊥CD于E.∵AD∥BC,∠C=90°,OE⊥CD,∴AD∥OE∥BC.又OA=OB,∴DE=CE.∴OE=.又AB>AD+BC,∴OE<,即圓心到直線的距離小于圓的半徑,則直線和圓相交.故選C.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為點P,若AB=2,AC=.

求:(1)∠A的度數;(2)的長;(3)弓形CBD的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=∠CAB.

(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF=,求BC和BF的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.

(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結果保留π)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,AO是△ABC的中線,⊙O與AB相切于點D.

(1)要使⊙O與AC邊也相切,應增加條件__       _______.
(2)增加條件后,請你證明⊙O與AC相切.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知點E在△ABC的邊AB上,以AE為直徑的⊙O與BC相切于點D,且AD平分∠BAC .
求證:AC⊥BC .

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知⊙O的半徑為5,圓心O到直線AB的距離為2,則⊙O上有且只有_________ 個點到直線AB的距離為3.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,水平地面上有一面積為30p 的灰色扇形OAB,其中OA的長度 為6 ,且OA與地面垂直.若在沒有滑動的情況下,將圖(甲)的扇形向右滾動至點A再一次接觸地面,如圖(乙)所示,則O點移動了(   )
A.11pB.12pC.10p + D.11p +

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,在平面直角坐標系xOy中,直線AB經過點A(-4,0)、B(0,4),⊙O的半徑為1(O為坐標原點),點P在直線AB上,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為(   )
 
A.B.C.2D.3

查看答案和解析>>

同步練習冊答案