【題目】如圖,四邊形AOBC是正方形,點(diǎn)C的坐標(biāo)是(4,0).
(Ⅰ)正方形AOBC的邊長為 ,點(diǎn)A的坐標(biāo)是 .
(Ⅱ)將正方形AOBC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)45°,點(diǎn)A,B,C旋轉(zhuǎn)后的對應(yīng)點(diǎn)為A′,B′,C′,求點(diǎn)A′的坐標(biāo)及旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積;
(Ⅲ)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線OACB方向以1個(gè)單位/秒的速度勻速運(yùn)動(dòng),同時(shí),另一動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿折線OBCA方向以2個(gè)單位/秒的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)它們相遇時(shí)同時(shí)停止運(yùn)動(dòng),當(dāng)△OPQ為等腰三角形時(shí),求出t的值(直接寫出結(jié)果即可).
【答案】(1)4,;(2)旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積為;(3).
【解析】
(1)連接AB,根據(jù)△OCA為等腰三角形可得AD=OD的長,從而得出點(diǎn)A的坐標(biāo),則得出正方形AOBC的面積;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得OA′的長,從而得出A′C,A′E,再求出面積即可;
(3)根據(jù)P、Q點(diǎn)在不同的線段上運(yùn)動(dòng)情況,可分為三種列式①當(dāng)點(diǎn)P、Q分別在OA、OB時(shí),②當(dāng)點(diǎn)P在OA上,點(diǎn)Q在BC上時(shí),③當(dāng)點(diǎn)P、Q在AC上時(shí),可方程得出t.
解:(1)連接AB,與OC交于點(diǎn)D,
四邊形是正方形,
∴△OCA為等腰Rt△,
∴AD=OD=OC=2,
∴點(diǎn)A的坐標(biāo)為.
4,.
(2)如圖
∵ 四邊形是正方形,
∴,.
∵ 將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn),
∴ 點(diǎn)落在軸上.
∴.
∴ 點(diǎn)的坐標(biāo)為.
∵,
∴.
∵ 四邊形,是正方形,
∴,.
∴,.
∴.
∴.
∵,
,
∴ .
∴旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積為.
(3)設(shè)t秒后兩點(diǎn)相遇,3t=16,∴t=
①當(dāng)點(diǎn)P、Q分別在OA、OB時(shí),
∵,OP=t,OQ=2t
∴不能為等腰三角形
②當(dāng)點(diǎn)P在OA上,點(diǎn)Q在BC上時(shí)如圖2,
當(dāng)OQ=QP,QM為OP的垂直平分線,
OP=2OM=2BQ,OP=t,BQ=2t-4,
t=2(2t-4),
解得:t=.
③當(dāng)點(diǎn)P、Q在AC上時(shí),
不能為等腰三角形
綜上所述,當(dāng)時(shí)是等腰三角形
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形是正方形,點(diǎn)的坐標(biāo)為,弧是以點(diǎn)為圓心,為半徑的圓;弧是以點(diǎn)為圓心,為半徑的圓弧,弧是以點(diǎn)為圓心,為半徑的圓弧,弧是以點(diǎn)為圓心,為半徑的圓弧.繼續(xù)以點(diǎn),,,為圓心按上述作法得到的曲線…稱為正方形的“漸開線”,則點(diǎn)的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O為△ABC的內(nèi)切圓,點(diǎn)D是斜邊AB的中點(diǎn),則tan∠ODA=( 。
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級舉行英語演講比賽,準(zhǔn)備用1200元錢(全部用完)購買A,B兩種筆記本作為獎(jiǎng)品,已知A,B兩種每本分別為12元和20元,設(shè)購入A種x本,B種y本.
(1)求y關(guān)于x的函數(shù)表達(dá)式.
(2)若購進(jìn)A種的數(shù)量不少于B種的數(shù)量.
①求至少購進(jìn)A種多少本?
②根據(jù)①的購買,發(fā)現(xiàn)B種太多,在費(fèi)用不變的情況下把一部分B種調(diào)換成另一種C,調(diào)換后C種的數(shù)量多于B種的數(shù)量,已知C種每本8元,則調(diào)換后C種至少有______本(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內(nèi)切圓半徑為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點(diǎn)O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點(diǎn)D,并與邊AC相交于另一點(diǎn)F.
(1)求證:BD是⊙O的切線.
(2)若AB=,E是半圓上一動(dòng)點(diǎn),連接AE,AD,DE.
填空:
①當(dāng)的長度是____________時(shí),四邊形ABDE是菱形;
②當(dāng)的長度是____________時(shí),△ADE是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點(diǎn)O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點(diǎn)D,并與邊AC相交于另一點(diǎn)F.
(1)求證:BD是⊙O的切線.
(2)若AB=,E是半圓上一動(dòng)點(diǎn),連接AE,AD,DE.
填空:
①當(dāng)的長度是____________時(shí),四邊形ABDE是菱形;
②當(dāng)的長度是____________時(shí),△ADE是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線,經(jīng)過點(diǎn)A(-1,-2),B(0,1).
(1)求拋物線的關(guān)系式及頂點(diǎn)P的坐標(biāo).
(2)若點(diǎn)B′與點(diǎn)B關(guān)于x軸對稱,把(1)中的拋物線向左平移m個(gè)單位,平移后的拋物線經(jīng)過點(diǎn)B′,設(shè)此時(shí)拋物線頂點(diǎn)為點(diǎn)P′.
①求∠P′B B′的大小.
②把線段P′B′以點(diǎn)B′為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)120°,點(diǎn)P′落在點(diǎn)M處,設(shè)點(diǎn)N在(1)中的拋物線上,當(dāng)△MN B′的面積等于6時(shí),求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線:與直線:交于點(diǎn),則______.
【答案】-1
【解析】
將點(diǎn)A的坐標(biāo)代入兩直線解析式得出關(guān)于m和b的方程組,解之可得.
解:由題意知,
解得,
故答案為:.
【點(diǎn)睛】
本題主要考查兩直線相交或平行問題,解題的關(guān)鍵是掌握兩直線的交點(diǎn)坐標(biāo)必定同時(shí)滿足兩個(gè)直線解析式.
【題型】填空題
【結(jié)束】
11
【題目】如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點(diǎn)B落在點(diǎn)E處,CE交AD于點(diǎn)F,則△AFC的面積等于___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com