已知平面直角坐標系中,B(-3,0),A為y軸正半軸上一動點,半徑為的⊙A交y軸于點G、H(點G在點H的上方),連接BG交⊙A于點C.

(1)如圖①,當⊙A與x軸相切時,求直線BG的解析式;
(2)如圖②,若CG=2BC,求OA的長;
(3)如圖③,D為半徑AH上一點,且AD=1,過點D作⊙A的弦CE,連接GE并延長交x軸于點F,當⊙A與x軸相離時,給出下列結論:① 的值不變;②OG•OF的值不變.其中有且只有一個結論是正確的,請你判斷哪一個結論正確,寫出正確的結論并直接寫出其值.

解:(1)⊙A與x軸相切,OA=2.5,G(0,5).
設直線BG的解析式為:y=kx+b,將B、G兩點的坐標代入一次函數(shù)關系式y(tǒng)=kx+b中,
得出直線BG的解析式為:y=

(2)過點C作CM⊥GH于點M,則CM∥BO,
∴△GCM∽△GBO,
,
∵CG=2BC,B0=3,
∴CM=2.
設GM=x,xl=1,x2=4,
∴MG=1或MG=4.
GO=6或GO=1.5

當CO=1.5<2.5

,則A點在y軸的負半軸,不合題意,故舍.
∴GO=6.∴OA=GO-AG=3.5

(3)的值不變,其值為7.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

7、已知平面直角坐標系中兩點A(-1,O)、B(1,2).連接AB,平移線段AB得到線段A1B1,若點A的對應點A1的坐標為(2,-1),則B的對應點B1的坐標為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知平面直角坐標系中三個頂點的坐標為D(1,-4),E(1,2),F(xiàn)(3,0),那么,△DEF的面積為( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C(
163
,0)
,精英家教網(wǎng)O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、已知平面直角坐標系中兩點A(-2,3),B(-3,1),連接AB,平移線段AB得到線段A1B1,若點A的對應點A1的坐標為(3,4),則點B1的坐標為
(2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知平面直角坐標系中,菱形ABCD的頂點分別在x軸、y軸上,其中C,D兩點的坐標分別為(4,0),(0,-3).兩動點P、Q分別從A、C同時出發(fā),點P以每秒1個單位的速度沿線段AB向終點B運動,點Q以每秒2個單位的速度沿折線CDA向終點A運動,設運動時間為x秒.
(1)求菱形ABCD的高h和面積s的值;
(2)當Q在CD邊上運動,x為何值時直線PQ將菱形ABCD的面積分成1:2兩部分;
(3)設四邊形APCQ的面積為y,求y關于x的函數(shù)關系式(要寫出x的取值范圍);在P、Q運動的整個過程中是否存在y的最大值?若存在,求出這個最大值,并指出此時P、Q的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案