【題目】將某圖形的各頂點的橫坐標(biāo)減去2,縱坐標(biāo)保持不變,可將該圖形( )
A.向右平移2個單位
B.向左平移2個單位
C.向上平移2個單位
D.向下平移2個單位
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為開展好大課間活動,欲購買單價為20元的排球和單價為80元的籃球共100個.
(1)設(shè)購買排球數(shù)為x(個),購買兩種球的總費用為y(元),請你寫出y與x的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)如果購買兩種球的總費用不超過6620元,并且籃球數(shù)不少于排球數(shù)的3倍,那么有哪幾種購買方案?
(3)從節(jié)約開支的角度來看,你認(rèn)為采用哪種方案更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個正多邊形的內(nèi)角和為720°,則這個正多邊形的每一個內(nèi)角是( 。
A. 60° B. 90° C. 108° D. 120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點.
(1)求AD的長及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當(dāng)點P運動到點C時,兩點同時停止運動,設(shè)運動時間為t秒,當(dāng)t為何值時,以P,Q,C為頂點的三角形與ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(biāo)(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分). 目前節(jié)能燈在各城市已基本普及,今年某市面向縣級及農(nóng)村地區(qū)推廣,為響應(yīng)號召,朝陽燈飾商場用了4200元購進(jìn)甲型和乙型兩種節(jié)能燈.這兩種型號節(jié)能燈的進(jìn)價、售價如表:
進(jìn)價(元/只) | 售價(元/只) | |
甲型 | 25 | 30 |
乙型 | 45 | 60 |
特別說明:毛利潤=售價﹣進(jìn)價
(1)朝陽燈飾商場銷售甲型節(jié)能燈一只毛利潤是 元;
(2)朝陽燈飾商場購買甲,乙兩種節(jié)能燈共100只,其中買了甲型節(jié)能燈多少只?
(3)現(xiàn)在朝陽燈飾商場購進(jìn)甲型節(jié)能燈m只,銷售完節(jié)能燈時所獲的毛利潤為1080元.求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下面不能判斷是平行四邊形的是( 。
A.∠B=∠D,∠A=∠C
B.AB∥CD,AD∥BC
C.AB∥CD,AB=CD
D.∠B+∠DAB=180°,∠B+∠BCD=180°
查看答案和解析>>