已知△ABC是一張三角形的紙片.
(1)如圖①,沿DE折疊,使點A落在邊AC上點A′的位置,∠DA′E與∠1的之間存在怎樣的數(shù)量關(guān)系?為什么?
(2)如圖②所示,沿DF折疊,使點A落在四邊形BCED的內(nèi)部點A′的位置,∠A、∠1與∠2之間存在怎樣的數(shù)量關(guān)系?為什么?
(3)如圖③,沿DE折疊,使點A落在四邊形BCED的外部點A′的位置,∠A、∠1與∠2之間存在怎樣的數(shù)量關(guān)系?為什么?
分析:(1)根據(jù)翻折的性質(zhì)可得∠A=∠DA′E,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和解答即可;
(2)根據(jù)翻折變換的性質(zhì)用∠1∠2表示出∠ADE和∠AED,再根據(jù)三角形的內(nèi)角和定理列式整理即可得解;
(3)根據(jù)翻折的性質(zhì)可得∠A=∠DA′E,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式整理即可得解.
解答:解:(1)∵點A沿DE折疊落在點A′的位置,
∴∠A=∠DA′E,
根據(jù)三角形外角性質(zhì),∠1=∠A+∠DA′E=2∠DA′E,
即∠1=2∠DA′E;

(2)∵點A沿DE折疊落在點A′的位置,
∴∠ADE=∠A′DE,∠AED=∠A′ED,
∴∠ADE=
1
2
(180°-∠1),∠AED=
1
2
(180°-∠2),
在△ADE中,∠A+∠ADE+∠AED=180°,
∴∠A+
1
2
(180°-∠1)+
1
2
(180°-∠2)=180°,
整理得,∠A=∠1+∠2;

(3)如圖③,∵點A沿DE折疊落在點A′的位置,
∴∠A=∠A′,
根據(jù)三角形的外角性質(zhì),∠3=∠2+∠A′,
∠1=∠A+∠3,
∴∠1=∠A+∠2+∠A′=∠2+2∠A,
即∠1=∠2+2∠A.
點評:本題考查了翻折變換的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,三角形的內(nèi)角和等于180°,綜合題,但難度不大,熟記性質(zhì)準確識圖是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,Rt△ABC是一張放在平面直角坐標系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4.將紙片的直角部分翻折,使點C落在精英家教網(wǎng)AB邊上,記為D點,AE為折痕,E在y軸上.
(1)在如圖所示的直角坐標系中,求E點的坐標及AE的長.
(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當t取何值時,S有最大值?最大值是多少?
(3)當t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:△ABC是一張等腰直角三角形紙板,∠B=90°,AB=BC=1.
(1)要在這張紙板上剪出一個正方形,使這個正方形的四個頂點都在△ABC的邊上.小林設(shè)計出了一種剪法,如圖1所示.請你再設(shè)計出一種不同于圖1的剪法,并在圖2中畫出來.
(2)若按照小林設(shè)計的圖1所示的剪法來進行裁剪,記圖1為第一次裁剪,得到1個正方形,將它的面積記為S1,則S1=
1
4
1
4
;在余下的2個三角形中還按照小林設(shè)計的剪法進行第二次裁剪(如圖3),得到2個新的正方形,將此次所得2個正方形的面積的和記為S2,則S2=
1
8
1
8
;在余下的4個三角形中再按照小林設(shè)計的剪法進行第三次裁剪(如圖4),得到4個新的正方形,將此次所得4個正方形的面積的和記為S3;按照同樣的方法繼續(xù)操作下去…,第n次裁剪得到
2n-1
2n-1
個新的正方形,它們的面積的和Sn=
1
2n+1
1
2n+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011貴州六盤水,25,16分)如圖10所示,Rt△ABC是一張放在平面直角坐標系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4。將紙片的直角部分翻折,使點C落在AB邊上,記為D點,AE為折痕,E在y軸上。

(1)在圖10所示的直角坐標系中,求E點的坐標及AE的長。

(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當t取何值時,S有最大值?最大值是多少?

(3)當t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011貴州六盤水,25,16分)如圖10所示,Rt△ABC是一張放在平面直角坐標系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4。將紙片的直角部分翻折,使點C落在AB邊上,記為D點,AE為折痕,E在y軸上。
(1)在圖10所示的直角坐標系中,求E點的坐標及AE的長。
(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當t取何值時,S有最大值?最大值是多少?
(3)當t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(貴州六盤水卷)數(shù)學 題型:解答題

(2011貴州六盤水,25,16分)如圖10所示,Rt△ABC是一張放在平面直角坐標系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4。將紙片的直角部分翻折,使點C落在AB邊上,記為D點,AE為折痕,E在y軸上。

(1)在圖10所示的直角坐標系中,求E點的坐標及AE的長。

(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當t取何值時,S有最大值?最大值是多少?

(3)當t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標。

 

查看答案和解析>>

同步練習冊答案