如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)
解:如圖,過點C作CF⊥AB于點F,

設(shè)塔高AE=x,
由題意得,EF=BE﹣CD=56﹣27=29m,AF=AE+EF=(x+29),
在Rt△AFC中,∠ACF=36°52′,AF=(x+29),
。
在Rt△ABD中,∠ADB=45°,AB=x+56,
則BD=AB=x+56。
∵CF=BD,∴,
解得:x=52。
答:該鐵塔的高AE為52米。
根據(jù)樓高和山高可求出EF,繼而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根據(jù)CF=BD可建立方程,解出即可。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:計算題

計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某市在地鐵施工期間,交管部門在施工路段設(shè)立了矩形路況警示牌BCEF(如圖所示),已知立桿AB的高度是3米,從側(cè)面D點測到路況警示牌頂端C點和底端B點的仰角分別是60°和45°,求路況警示牌寬BC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,一條自西向東的觀光大道l上有A、B兩個景點,A、B相距2km,在A處測得另一景點C位于點A的北偏東60°方向,在B處測得景點C位于景點B的北偏東45°方向,求景點C到觀光大道l的距離.(結(jié)果精確到0.1km)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:計算題

計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在三角形紙片ABC中,∠C=90°,AC=6,折疊該紙片,使點C落在AB邊上的D點處,折痕BE與AC交于點E,若AD=BD,則折痕BE的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,益陽市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張在小道上測得如下數(shù)據(jù):AB=80.0米,∠PAB=38.5°,∠PBA=26.5.請幫助小張求出小橋PD的長并確定小橋在小道上的位置.(以A,B為參照點,結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我市某中學(xué)在創(chuàng)建“特色校園”的活動中,將本校的辦學(xué)理念做成宣傳牌(AB),放置在教學(xué)樓的頂部(如圖所示).小明在操場上的點D處,用1米高的測角儀CD,從點C測得宣傳牌的底部B的仰角為37°,然后向教學(xué)樓正方向走了4米到達點F處,又從點E測得宣傳牌的頂部A的仰角為45°.已知教學(xué)樓高BM=17米,且點A,B,M在同一直線上,求宣傳牌AB的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點B處,風(fēng)箏掛在建筑物上方的樹枝點G處(點G在FE的延長線上).經(jīng)測量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點G與建筑物頂點D及風(fēng)箏線在手中的點A在同一條直線上,點A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.
(1)求風(fēng)箏距地面的高度GF;
(2)在建筑物后面有長5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計算說明:若兵兵充分利用梯子和一根米長的竹竿能否觸到掛在樹上的風(fēng)箏?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

同步練習(xí)冊答案