平面直角坐標(biāo)系內(nèi)有兩條直線l1、l2,直線l1的解析式為,如果將坐標(biāo)紙折疊,使直線l1與l2重合,此時(shí)點(diǎn)(-2,0)與點(diǎn)(0,2)也重合.
(1)求直線l2的解析式;
(2)設(shè)直線l1與l2相交于點(diǎn)M,問(wèn):是否存在這樣的直線l:y=x+t,使得如果將坐標(biāo)紙沿直線l折疊,點(diǎn)M恰好落在x軸上?若存在,求出直線l的解析式;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)直線l2與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)P(a,0)在x軸正半軸上運(yùn)動(dòng),點(diǎn)Q(0,b)在y軸負(fù)半軸上運(yùn)動(dòng),且PQ⊥AB,若△APQ是等腰三角形,求a,b.

【答案】分析:(1)先求出在直線l1上的兩個(gè)點(diǎn)的坐標(biāo),然后折疊再求出相應(yīng)的兩點(diǎn)坐標(biāo),最后求出直線l2的解析式;
(2)先求出點(diǎn)M的坐標(biāo),然后根據(jù)題中已知條件看是否存在直線1;
(3)求出A、B的坐標(biāo),然后根據(jù)△APQ是等腰三角形,且PQ⊥AB來(lái)求出a,b.
解答:解:如圖所示:
(1)∵點(diǎn)(-2,0)與點(diǎn)(0,2)重合,可知折疊痕跡為y=-x;
直線l1經(jīng)過(guò)點(diǎn)(0,1),(1.5,0).
可知對(duì)稱的點(diǎn)為(-1,0),(0,-1.5).
設(shè)直線l2解析式為:y=kx+b;
將點(diǎn)的坐標(biāo)代入可得:,
解得:;
則直線l2的解析式為:y=-1.5x-1.5;

(2)直線l1與l2相交于點(diǎn)M,
則M的坐標(biāo)為(-3,3);
因?yàn)橹本1的斜率為k=1,
而點(diǎn)M關(guān)于斜率為1的直線的對(duì)稱點(diǎn)必在直線y=-x上面,
所以點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)為O(0,0),
可知點(diǎn)M和點(diǎn)O關(guān)于(-1.5,1.5)對(duì)稱,
將點(diǎn)(-1.5,1.5)代入直線l中可得解析式為:y=x+3;
所以存在直線l:y=x+3,使得如果將坐標(biāo)紙沿直線l折疊,點(diǎn)M恰好落在x軸上;

(3)根據(jù)直線l2解析式可得A(-1,0),B(0,-1.5);
因?yàn)镻Q⊥AB可知直線PQ的斜率為k==;
可設(shè)b=-2t,則a=3t,t>0;
①AQ=PQ,則PO=AO,
所以a=1,b=;
②當(dāng)AP=AQ,3t+1=?t=0或t=,
不合題意,舍去;
③當(dāng)AP=PQ,3t+1=t,
解得t=或t=(舍去),a=,b=-;
所以
點(diǎn)評(píng):本題主要考查對(duì)于二元一次方程組的應(yīng)用以及對(duì)于對(duì)稱圖形的掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

平面直角坐標(biāo)系內(nèi)有兩條直線l1、l2,直線l1的解析式為y=-
2
3
x+1,如果將坐標(biāo)紙折疊,使直線l1與l2重合,此時(shí)點(diǎn)(-2,0)與點(diǎn)(0,2)也重合.
(1)求直線l2的解析式;
(2)設(shè)直線l1與l2相交于點(diǎn)M,問(wèn):是否存在這樣的直線l:y=x+t,使得如果將坐標(biāo)紙沿直線l折疊,點(diǎn)M恰好落在x軸上若存在,求出直線l的解析式;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)直線l2與x軸的交點(diǎn)為A,與y軸的交點(diǎn)為B,以點(diǎn)C(0,
2
3
)為圓心,CA的長(zhǎng)為半徑作圓,過(guò)點(diǎn)B任作一條直線(不與y軸重合),與⊙C相交于D、E兩點(diǎn)(點(diǎn)D在點(diǎn)E的下方)
①在如圖所示的直角坐標(biāo)系中畫(huà)出圖形;
②設(shè)OD=x,△BOD的面積為S1,△BEC的面積為S2,
S1
S2
=y
,求y與x之間的函數(shù)關(guān)系式精英家教網(wǎng),并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)平面直角坐標(biāo)系內(nèi)有兩條直線l1、l2,直線l1的解析式為y=-
23
x+1
,如果將坐標(biāo)紙折疊,使直線l1與l2重合,此時(shí)點(diǎn)(-2,0)與點(diǎn)(0,2)也重合.
(1)求直線l2的解析式;
(2)設(shè)直線l1與l2相交于點(diǎn)M,問(wèn):是否存在這樣的直線l:y=x+t,使得如果將坐標(biāo)紙沿直線l折疊,點(diǎn)M恰好落在x軸上?若存在,求出直線l的解析式;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)直線l2與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)P(a,0)在x軸正半軸上運(yùn)動(dòng),點(diǎn)Q(0,b)在y軸負(fù)半軸上運(yùn)動(dòng),且PQ⊥AB,若△APQ是等腰三角形,求a,b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

對(duì)平面直角坐標(biāo)系內(nèi)有兩個(gè)點(diǎn)A、B 定義運(yùn)算☆如下:A☆B=
AB…(如果AB∥x軸)
0…(如果AB不平行于x軸)

例如:A(3,2)B(2,3)則 A☆B=0; 又例如:A(3,2)B(5,2)則 A☆B=2
現(xiàn)在已知A(-6,-4)且 A☆B=9,則B點(diǎn)的坐標(biāo)為
(-15,-4)或(3,-4)
(-15,-4)或(3,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

平面直角坐標(biāo)系內(nèi)有兩條直線l1、l2,直線l1的解析式為y=-數(shù)學(xué)公式x+1,如果將坐標(biāo)紙折疊,使直線l1與l2重合,此時(shí)點(diǎn)(-2,0)與點(diǎn)(0,2)也重合.
(1)求直線l2的解析式;
(2)設(shè)直線l1與l2相交于點(diǎn)M,問(wèn):是否存在這樣的直線l:y=x+t,使得如果將坐標(biāo)紙沿直線l折疊,點(diǎn)M恰好落在x軸上若存在,求出直線l的解析式;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)直線l2與x軸的交點(diǎn)為A,與y軸的交點(diǎn)為B,以點(diǎn)C(0,數(shù)學(xué)公式)為圓心,CA的長(zhǎng)為半徑作圓,過(guò)點(diǎn)B任作一條直線(不與y軸重合),與⊙C相交于D、E兩點(diǎn)(點(diǎn)D在點(diǎn)E的下方)
①在如圖所示的直角坐標(biāo)系中畫(huà)出圖形;
②設(shè)OD=x,△BOD的面積為S1,△BEC的面積為S2,數(shù)學(xué)公式,求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年江蘇省鎮(zhèn)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•鎮(zhèn)江)平面直角坐標(biāo)系內(nèi)有兩條直線l1、l2,直線l1的解析式為y=-x+1,如果將坐標(biāo)紙折疊,使直線l1與l2重合,此時(shí)點(diǎn)(-2,0)與點(diǎn)(0,2)也重合.
(1)求直線l2的解析式;
(2)設(shè)直線l1與l2相交于點(diǎn)M,問(wèn):是否存在這樣的直線l:y=x+t,使得如果將坐標(biāo)紙沿直線l折疊,點(diǎn)M恰好落在x軸上若存在,求出直線l的解析式;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)直線l2與x軸的交點(diǎn)為A,與y軸的交點(diǎn)為B,以點(diǎn)C(0,)為圓心,CA的長(zhǎng)為半徑作圓,過(guò)點(diǎn)B任作一條直線(不與y軸重合),與⊙C相交于D、E兩點(diǎn)(點(diǎn)D在點(diǎn)E的下方)
①在如圖所示的直角坐標(biāo)系中畫(huà)出圖形;
②設(shè)OD=x,△BOD的面積為S1,△BEC的面積為S2,,求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案