【題目】如圖,已知半圓O的直徑AB4,沿它的一條弦折疊.若折疊后的圓弧與直徑AB相切于點D,且ADDB31,則折痕EF的長______

【答案】

【解析】

解:如圖,過O作弦BC的垂線OP,垂足為D,分別與弧的交點為AG,過切點FPF⊥半徑OCOPP點,

∵OP⊥BC∴BD=DC,即OPBC的中垂線. ∴OP必過弧BGC所在圓的圓心

∵OE為弧BGC所在圓的切線,PF⊥OE,∴PF必過弧BGC所在圓的圓心

P為弧BGC所在圓的圓心

BAC沿BC折疊得到弧BGC,∴⊙P為半徑等于⊙O的半徑,即PF=PG=OE=2,并且AD=GD

∴OG=AP

F點分⊙O的直徑為31兩部分,∴OF=1

Rt△OPF中,設OG=x,則OP=x+2,

∴OP2=OF2+PF2,即(x+22=12+22,解得x=

∴AG=2-=

∴DG=

∴OD=OG+DG=

Rt△OBD中,BD2=OB2+OD2,即BD2=22-2,

∴BD=

∴BC=2BD=

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;

2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N

3)連接OM,MN

根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】發(fā)現(xiàn) 對于2,46三個連續(xù)的偶數(shù)來說,可以得到;即前兩個偶數(shù)的和等于第三個偶數(shù);對于8,10,12,14,16五個連續(xù)的偶數(shù)來說,可以得到,即前三個偶數(shù)的和等于后兩個偶數(shù)的和.

驗證 對于九個連續(xù)偶數(shù)來說,若前五個偶數(shù)的和等于后四個偶數(shù)的和,則中間的偶數(shù)是_______

延伸 是否存在連續(xù)的五個奇數(shù),使得前三個奇數(shù)的和等于后兩個奇數(shù)的和.若有,寫出這五個奇數(shù);若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,只改變正方形的形狀,得到四邊形,且,則四邊形與正方形的面積的比是( 。

A.1:1B.2:3C.:2D.3:4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線相交于,在直線上分別取點,使,分別過點A,B作直線的垂線,垂足分別為,直線交于,設

1)求證:;

2)小明說,不論是銳角還是鈍角,點都在的平分線上,你認為他說的有道理嗎?并說明理由.

3)連接,當與三角板的形狀相同時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于點,點,與y軸交于點C,且過點.點P、Q是拋物線上的動點.

(1)求拋物線的解析式;

(2)當點P在直線OD下方時,求面積的最大值.

(3)直線OQ與線段BC相交于點E,當相似時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務質(zhì)量,收集并整理了20141月至201612月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖:

根據(jù)該折線圖,下列結(jié)論錯誤的是( )

A.月接待游客量逐月增加

B.年接待游客量逐年增加

C.各年的月接待游客量高峰期大致在7,8月份

D.各年1月至6月的月接待游客量相對7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果公司新購進10000千克柑橘,每千克柑橘的成本為9. 柑橘在運輸、存儲過程中會有損壞,銷售人員從所有的柑橘中隨機抽取若干柑橘,進行柑橘損壞率統(tǒng)計,并把獲得的數(shù)據(jù)記錄如下:

柑橘總重量n/千克

50

100

150

200

250

300

350

400

450

500

損壞柑橘重量m/千克

5.50

10.50

15.15

19.42

24.25

30.93

35.32

39.24

44.57

51.54

柑橘損壞的頻率

0.110

0.105

0.101

0.097

0.097

0.103

0.101

0.098

0.099

0.103

根據(jù)以上數(shù)據(jù),估計柑橘損壞的概率為 (結(jié)果保留小數(shù)點后一位);由此可知,去掉損壞的柑橘后,水果公司為了不虧本,完好柑橘每千克的售價至少為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 在三邊互不相等的ABC中, D,E,F分別是AB,ACBC邊的中點.連接DE,過點CCMABDE的延長線于點M,連接CD、EF交于點N,則圖中全等三角形共有(

A.3B.4C.5D.6

查看答案和解析>>

同步練習冊答案