【題目】如圖,△ABC中,∠C=90,AB=10cm,AC=8cm,點(diǎn)P從點(diǎn)A開始出發(fā)向點(diǎn)C以2cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)出發(fā)向點(diǎn)C以1cm/s的速度移動(dòng),若P、Q分別同時(shí)從A,B出發(fā),幾秒后四邊形APQB是△ABC面積的
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一個(gè)簡易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長為19 m),另外三邊利用學(xué),F(xiàn)有總長38 m的鐵欄圍成.
(1)若圍成的面積為180 m2,試求出自行車車棚的長和寬;
(2)能圍成面積為200 m2的自行車車棚嗎?如果能,請你給出設(shè)計(jì)方,如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料
我們通過下列步驟估計(jì)方程2x2+x﹣2=0的根的所在的范圍.
第一步:畫出函數(shù)y=2x2+x﹣2的圖象,發(fā)現(xiàn)圖象是一條連續(xù)不斷的曲線,且與x軸的一個(gè)
交點(diǎn)的橫坐標(biāo)在0,1之間.
第二步:因?yàn)楫?dāng)x=0時(shí),y=﹣2<0;當(dāng)x=1時(shí),y=1>0.
所以可確定方程2x2+x﹣2=0的一個(gè)根x1所在的范圍是0<x1<1.
第三步:通過取0和1的平均數(shù)縮小x1所在的范圍;
取x=,因?yàn)楫?dāng)x=時(shí),y<0,
又因?yàn)楫?dāng)x=1時(shí),y>0,
所以<x1<1.
(1)請仿照第二步,通過運(yùn)算,驗(yàn)證2x2+x﹣2=0的另一個(gè)根x2所在范圍是﹣2<x2<﹣1;
(2)在﹣2<x2<﹣1的基礎(chǔ)上,重復(fù)應(yīng)用第三步中取平均數(shù)的方法,將x2所在范圍縮小至m<x2<n,使得n﹣m≤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=ax2+bx+c(a≠0)的圖象于x軸的交點(diǎn)坐標(biāo)分別為(x1,0),(x2,0),且x1<x2,圖象上有一點(diǎn)M(x0,y0)在x軸下方,對于以下說法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正確的是( 。
A.①③④B.①②④C.①②③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)決定把一塊長,寬的矩形空地建成居民健身廣場,設(shè)計(jì)方案如圖,陰影區(qū)域?yàn)榫G化區(qū)(四塊綠化區(qū)為大小、形狀都相同的矩形),空白區(qū)域?yàn)榛顒?dòng)區(qū),且四周的4個(gè)出口寬度相同,其寬度不小于,不大于,設(shè)綠化區(qū)較長邊為,活動(dòng)區(qū)的面積為.為了想知道出口寬度的取值范圍,小明同學(xué)根據(jù)出口寬度不小于,算出.
(1)求與的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;
(2)求活動(dòng)區(qū)的最大面積;
(3)預(yù)計(jì)活動(dòng)區(qū)造價(jià)為50元/,綠化區(qū)造價(jià)為40元/,若社區(qū)的此項(xiàng)建造投資費(fèi)用不得超過72000元,求投資費(fèi)用最少時(shí)活動(dòng)區(qū)的出口寬度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D,與CA的延長線相交于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)試說明DF是⊙O的切線;
(2)若AC=3AE=6,求tanC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,點(diǎn)F在BC上,連DF與AB的延長線交于點(diǎn)G.
(1)求證:△CDF∽△BGF;
(2)當(dāng)點(diǎn)F是BC的中點(diǎn)時(shí),過F作EF∥CD交AD于點(diǎn)E,若AB=6cm,EF=4cm,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要證明平行四邊形ABCD為正方形,那么我們需要在四邊形ABCD是平行四邊形的基礎(chǔ)上,進(jìn)一步證明( )
A.AB=AD且AC⊥BDB.AB=AD且AC=BDC.∠A=∠B且AC=BDD.AC和BD互相垂直平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,2×2網(wǎng)格(每個(gè)小正方形的邊長為1)中有A,B,C,D,E,F,G,H,O九個(gè)格點(diǎn).拋物線l的解析式為(n為整數(shù)).若l經(jīng)過這九個(gè)格點(diǎn)中的三個(gè),則滿足這樣條件的拋物線條數(shù)為_________條
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com