【題目】已知二次函數(shù)y=﹣2x2+bx+c的圖象經(jīng)過點(diǎn)A(0,4)和B(1,﹣2).
(1)求此函數(shù)的解析式;并運(yùn)用配方法,將此拋物線解析式化為y=a(x+m)2+k的形式;
(2)寫出該拋物線頂點(diǎn)C的坐標(biāo),并求出△CAO的面積.

【答案】
(1)解:將A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c,

,

解得

所以此函數(shù)的解析式為y=﹣2x2﹣4x+4;

y=﹣2x2﹣4x+4=﹣2(x2+2x+1)+2+4=﹣2(x+1)2+6


(2)解:∵y=﹣2(x+1)2+6,

∴C(﹣1,6),

∴△CAO的面積= ×4×1=2


【解析】(1)將A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c求得b,c的值,得到此函數(shù)的解析式;再利用配方法先提出二次項系數(shù),然后加上一次項系數(shù)的一半的平方來湊完全平方式,把一般式轉(zhuǎn)化為頂點(diǎn)式;(2)由頂點(diǎn)式可得頂點(diǎn)C的坐標(biāo),再根據(jù)三角形的面積公式即可求出△CAO的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,DA∥BC,tan∠DBA= ,若CD=2 ,則線段BC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD中,E為對角線BD上一點(diǎn),過E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.
(1)求證:EG=CG;EG⊥CG.
(2)將圖①中△BEF繞B點(diǎn)逆時針旋轉(zhuǎn)45°,如圖②所示,取DF中點(diǎn)G,連接EG,CG.問(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,則梯形ABCD的周長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角△ABC中,∠C=90°,∠A、∠B與∠C的對邊分別是a、b和c,那么下列關(guān)系中,正確的是(
A.cosA=
B.tanA=
C.sinA=
D.cosA=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)D、E分別在△ABC的邊AB、AC上,下列給出的條件中,不能判定DE∥BC的是(
A.BD:AB=CE:AC
B.DE:BC=AB:AD
C.AB:AC=AD:AE
D.AD:DB=AE:EC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在C處看到遠(yuǎn)處有一涼亭B,在涼亭B正東方向有一棵大樹A,這時此人在C處測得B在北偏西45°方向上,測得A在北偏東35°方向上.又測得A、C之間的距離為100米,求A、B之間的距離.(精確到1米).(參考數(shù)據(jù):sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式2x﹣3< ,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有實數(shù)根,則k的取值范圍在數(shù)軸上表示正確的是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案