寫出一個既是軸對稱又是中心對稱的幾何圖形的名稱_________.
圓(只要符合要求均可得分)

分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解,寫兩個符合條件的圖形則可.
解:兩個既是中心對稱、又是軸對稱的幾何圖形如圓,正方形(答案不唯一).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在下列四張交通標(biāo)志指示牌的圖片中,為軸對稱圖形的是……(    )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011湖北潛江)下列圖案中的哪一個可以看做是由圖案自身的一部分經(jīng)平移后而得到的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將點A,0)繞著原點順時針方向旋轉(zhuǎn)60°得到點   B,則點B的坐標(biāo)是    ▲    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

.下列藝術(shù)漢字中,對稱軸最多的是(     )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖形中,既是中心對稱圖形又是軸對稱圖形的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題8分)把兩個直角邊長均為6的等腰直角三角板ABCEFG疊放在一起(如圖①),使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFGO點順時針旋轉(zhuǎn)(旋轉(zhuǎn)角α滿足條件:0°<α<90°),四邊形CHGK是旋轉(zhuǎn)過程中兩三角板的重疊部分(如圖②).

小題1:(1) 探究:在上述旋轉(zhuǎn)過程中,BHCK的數(shù)量關(guān)系以及四邊形CHGK的面積的變化情況(直接寫出探究的結(jié)果,不必寫探究及推理過程);
  小題2:(2) 利用(1)中你得到的結(jié)論,解決下面問題:連接HK,在上述旋轉(zhuǎn)過程中,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的?若存在,求出此時BH的長度;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,△ABC和△DEF為等邊三角形,AB=DE,點B、C、D在x軸上,點A、E、F在y軸上,下面判斷正確的是(      )
 
A.△DEF是△ABC繞點O順時針旋轉(zhuǎn)60°得到的
B.△DEF是△ABC繞點O逆時針旋轉(zhuǎn)90°得到的
C.△ DEF是△ABC繞點O順時針旋轉(zhuǎn)90°得到的
D.△DEF是△ABC繞點O順時針旋轉(zhuǎn)120°得到的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分6分)
如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,Rt△ABC的頂點均在格點上,在建立平面直角坐標(biāo)系以后,點A的坐標(biāo)為(-6,1),點B的坐標(biāo)為(-3,1),點C的坐標(biāo)為(-3,3).
小題1:(1)將Rt△ABC沿X軸正方向平移5個單位得到Rt△A1B1C1,試在圖上畫出Rt△A1B1C1的圖形,并寫出點A1的坐標(biāo)。
小題2:(2)將原來的Rt△ABC繞著點B順時針旋轉(zhuǎn)90°得到Rt△A2B2C2,試在圖畫出Rt△A2B2C2的圖形。

查看答案和解析>>

同步練習(xí)冊答案