(2012•蘇州)如圖,已知BD是⊙O的直徑,點A、C在⊙O上,
AB
=
BC
,∠AOB=60°,則∠BDC的度數(shù)是(  )
分析:由BD是⊙O的直徑,點A、C在⊙O上,
AB
=
BC
,∠AOB=60°,利用在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得∠BDC的度數(shù).
解答:解:∵
AB
=
BC
,∠AOB=60°,
∴∠BDC=
1
2
∠AOB=30°.
故選C.
點評:此題考查了圓周角定理.此題比較簡單,注意數(shù)形結合思想的應用,注意在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半定理的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•蘇州)如圖,矩形ABCD的對角線AC、BD相交于點O,CE∥BD,DE∥AC,若AC=4,則四邊形CODE的周長(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•蘇州)如圖,正方形ABCD的邊AD與矩形EFGH的邊FG重合,將正方形ABCD以1cm/s的速度沿FG方向移動,移動開始前點A與點F重合,在移動過程中,邊AD始終與邊FG重合,連接CG,過點A作CG的平行線交線段GH于點P,連接PD.已知正方形ABCD的邊長為1cm,矩形EFGH的邊FG,GH的長分別為4cm,3cm,設正方形移動時間為x(s),線段GP的長為y(cm),其中0≤x≤2.5.
(1)試求出y關于x的函數(shù)關系式,并求當y=3時相應x的值;
(2)記△DGP的面積為S1,△CDG的面積為S2.試說明S1-S2是常數(shù);
(3)當線段PD所在直線與正方形ABCD的對角線AC垂直時,求線段PD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•蘇州)如圖,已知拋物線y=
1
4
x2-
1
4
(b+1)x+
b
4
(b是實數(shù)且b>2)與x軸的正半軸分別交于點A、B(點A位于點B的左側),與y軸的正半軸交于點C.
(1)點B的坐標為
(b,0)
(b,0)
,點C的坐標為
(0,
b
4
(0,
b
4
(用含b的代數(shù)式表示);
(2)請你探索在第一象限內是否存在點P,使得四邊形PCOB的面積等于2b,且△PBC是以點P為直角頂點的等腰直角三角形?如果存在,求出點P的坐標;如果不存在,請說明理由;
(3)請你進一步探索在第一象限內是否存在點Q,使得△QCO,△QOA和△QAB中的任意兩個三角形均相似(全等可作相似的特殊情況)?如果存在,求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•蘇州)如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(請將下面2小題的結果都精確到0.1米,參考數(shù)據(jù):
3
≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,則平臺DE的長最多為
11.0
11.0
米;
(2)一座建筑物GH距離坡角A點27米遠(即AG=27米),小明在D點測得建筑物頂部H的仰角(即∠HDM)為30°.點B、C、A、G、H在同一個平面內,點C、A、G在同一條直線上,且HG⊥CG,問建筑物GH高為多少米?

查看答案和解析>>

同步練習冊答案