【題目】如圖1,在△ABC中,AB=AC,射線BP從BA所在位置開始繞點B順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°)
(1)當(dāng)∠BAC=60°時,將BP旋轉(zhuǎn)到圖2位置,點D在射線BP上.若∠CDP=120°,則∠ACD__∠ABD(填“>”、“=”、“<”),線段BD、CD與AD之間的數(shù)量關(guān)系是_____;
(2)當(dāng)∠BAC=120°時,將BP旋轉(zhuǎn)到圖3位置,點D在射線BP上,若∠CDP=60°,求證:BD﹣CD=AD;
(3)將圖3中的BP繼續(xù)旋轉(zhuǎn),當(dāng)30°<α<180°時,點D是直線BP上一點(點P不在線段BD上),若∠CDP=120°,請直接寫出線段BD、CD與AD之間的數(shù)量關(guān)系(不必證明).
【答案】
(1)
解:如圖2,∵∠CDP=120°,
∴∠CDB=60°,
∵∠BAC=60°,
∴∠CDB=∠BAC=60°,
∴A、B、C、D四點共圓,
∴∠ACD=∠ABD.
在BP上截取BE=CD,連接AE.
在△DCA與△EBA中,
,
∴△DCA≌△EBA(SAS),
∴AD=AE,∠DAC=∠EAB,
∵∠CAB=∠CAE+∠EAB=60°,
∴∠DAE=60°,
∴△ADE是等邊三角形,
∴DE=AD.
∵BD=BE+DE,
∴BD=CD+AD.
故答案為=,BD=CD+AD;
(2)
解:如圖3,設(shè)AC與BD相交于點O,在BP上截取BE=CD,連接AE,過A作AF⊥BD于F.
∵∠CDP=60°,
∴∠CDB=120°.
∵∠CAB=120°,
∴∠CDB=∠CAB,
∵∠DOC=∠AOB,
∴△DOC∽△AOB,
∴∠DCA=∠EBA.
在△DCA與△EBA中,
,
∴△DCA≌△EBA(SAS),
∴AD=AE,∠DAC=∠EAB.
∵∠CAB=∠CAE+∠EAB=120°,
∴∠DAE=120°,
∴∠ADE=∠AED==30°.
∵在Rt△ADF中,∠ADF=30°,
∴DF=AD,
∴DE=2DF=AD,
∴BD=DE+BE=AD+CD,
∴BD﹣CD=AD;
(3)
解:線段BD、CD與AD之間的數(shù)量關(guān)系為BD+CD=AD.
【解析】(1)如圖2,由∠CDP=120°,根據(jù)鄰補(bǔ)角互補(bǔ)得出∠CDB=60°,那么∠CDB=∠BAC=60°,所以A、B、C、D四點共圓,根據(jù)圓周角定理得出∠ACD=∠ABD;在BP上截取BE=CD,連接AE.利用SAS證明△DCA≌△EBA,得出AD=AE,∠DAC=∠EAB,再證明△ADE是等邊三角形,得到DE=AD,進(jìn)而得出BD=CD+AD.
(2)如圖3,設(shè)AC與BD相交于點O,在BP上截取BE=CD,連接AE,過A作AF⊥BD于F.先由兩角對應(yīng)相等的兩三角形相似得出△DOC∽△AOB,于是∠DCA=∠EBA.再利用SAS證明△DCA≌△EBA,得出AD=AE,∠DAC=∠EAB.由∠CAB=∠CAE+∠EAB=120°,得出∠DAE=120°,根據(jù)等腰三角形的性質(zhì)及三角形內(nèi)角和定理求出∠ADE=∠AED==30°.解Rt△ADF,得到DF=AD,那么DE=2DF=AD,進(jìn)而得出BD=DE+BE=AD+CD,即BD﹣CD=AD;
(3)根據(jù)旋轉(zhuǎn)的性質(zhì)可得線段BD、CD與AD之間的數(shù)量關(guān)系.
此題考查了圖形的旋轉(zhuǎn)變換,涉及知識點有四點共圓問題,圓周角定理,等邊三角形判定,相似三角形性質(zhì),全等三角形性質(zhì),以及三角形內(nèi)角和定理和直角三角形性質(zhì)等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解本校學(xué)生對球類運動的愛好情況,采用抽樣的方法,從足球、籃球、排球、其它等四個方面調(diào)查了若干名學(xué)生,并繪制成“折線統(tǒng)計圖”與“扇形統(tǒng)計圖”.請你根據(jù)圖中提供的部分信息解答下列問題:
(1)在這次調(diào)查活動中,一共調(diào)查了名學(xué)生;
(2)“足球”所在扇形的圓心角是度;
(3)補(bǔ)全折線統(tǒng)計圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015朝陽)如圖,在△ABC中,以AB為直徑的⊙O交AC于點D,過點D作DE⊥BC于點E,且∠BDE=∠A.
(1)判斷DE與⊙O的位置關(guān)系并說明理由;
(2)若AC=16,tanA= , 求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點P是斜邊AB的中點,點M從點C向點A勻速運動,點N從點B向點C勻速運動,已知兩點同時出發(fā),同時到達(dá)終點,連接PM、PN、MN,在整個運動過程中,△PMN的面積S與運動時間t的函數(shù)關(guān)系圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個動點,∠AOC=60°,則當(dāng)△PAB為直角三角形時,AP的長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在100米直道AB上練習(xí)勻速往返跑,若甲、乙分別中A,B兩端同時出發(fā),分別到另一端點處掉頭,掉頭時間不計,速度分別為5m/s和4m/s.
(1)在坐標(biāo)系中,虛線表示乙離A端的距離s(單位:m)與運動時間t(單位:s)之間的函數(shù)圖象(0≤t≤200),請在同一坐標(biāo)系中用實線畫出甲離A端的距離s與運動時間t之間的函數(shù)圖象(0≤t≤200);
(2)根據(jù)(1)中所畫圖象,完成下列表格:
兩人相遇次數(shù) | 1 | 2 | 3 | 4 | … | n |
兩人所跑路程之和 | 100 | 300 | … |
|
(3)①直接寫出甲、乙兩人分別在第一個100m內(nèi),s與t的函數(shù)解析式,并指出自變量t的取值范圍;
②當(dāng)t=390s時,他們此時相遇嗎?若相遇,應(yīng)是第幾次?若不相遇,請通過計算說明理由,并求出此時甲離A端的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【發(fā)現(xiàn)】如圖∠ACB=∠ADB=90°,那么點D在經(jīng)過A,B,C三點的圓上(如圖①)
(1)【思考】如圖②,如果∠ACB=∠ADB=a(a≠90°)(點C,D在AB的同側(cè)),那么點D還在經(jīng)過A,B,C三點的圓上嗎?
請證明點D也不在⊙O內(nèi).
(2)【應(yīng)用】
利用【發(fā)現(xiàn)】和【思考】中的結(jié)論解決問題:
若四邊形ABCD中,AD∥BC,∠CAD=90°,點E在邊AB上,CE⊥DE.
(1)作∠ADF=∠AED,交CA的延長線于點F(如圖④),求證:DF為Rt△ACD的外接圓的切線;
(2)如圖⑤,點G在BC的延長線上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是邊CD的中點,連接BE并延長與AD的延長線相交于點F
(1)求證:四邊形BDFC是平行四邊形。
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com