【題目】如圖,點(diǎn)E、F分別是等邊△ABC中AC、AB邊上的中點(diǎn),以AE為邊向外作等邊△ADE.
(1)求證:四邊形AFED是菱形;
(2)連接DC,若BC=10,求四邊形ABCD的面積.
【答案】(1)證明詳見解析;(2).
【解析】
試題分析:(1)由等邊三角形的性質(zhì)得出AF=EF=AE=DE=AD,由四邊相等的四邊形是菱形,即可得出結(jié)論;
(2)作AM⊥BC于M,由等邊三角形的性質(zhì)和三角函數(shù)求出AM,在求出AD的長,證出四邊形ABCD是梯形,由梯形的面積公式即可得出結(jié)果.
試題解析:(1)∵△ABC、△ADE是等邊三角形,
∴AF=EF=AE=DE=AD,∠ACB=∠DAE=60°,
∴四邊形AFED是菱形;
(2)解:作AM⊥BC于M,如圖所示:
∵△ABC是等邊三角形,
∴AC=BC=10,∠B=60°,
∴AM=ABsin60°=10×=,
∵E是AC的中點(diǎn),
∴AE=AD=AC=5,
∵∠ACB=∠DAE=60°,
∴AD∥BC,
∴四邊形ABCD是梯形,
∴四邊形ABCD的面積=(AD+BC)×AM=(5+10)×=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明做了一個平行四邊形的紙板,但他不確定紙板形狀是否標(biāo)準(zhǔn),小紅用刻度尺量了這個四邊形的四條邊長,然后告訴小明,紙板是標(biāo)準(zhǔn)的平行四邊形,小紅得出這個結(jié)論的依據(jù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=(k是常數(shù)).
(1)若該函數(shù)的圖象與x軸有兩個不同的交點(diǎn),試求k的取值范圍;
(2)若點(diǎn)(1,k)在某反比例函數(shù)圖象上,要使該反比例函數(shù)和二次函數(shù)y=都是y隨x的增大而增大,求k應(yīng)滿足的條件及x的取值范圍;
(3)若拋物線y=與x軸交于A(,0)、B(,0)兩點(diǎn),且<,=34,若與y軸不平行的直線y=ax+b經(jīng)過點(diǎn)P(1,3),且與拋物線交于(,)、(,)兩點(diǎn),試探究是否為定值,并寫出探究過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若三角形的三個內(nèi)角的比是1:2:3,最短邊長為1cm,最長邊長為2cm,則這個三角形三個角度數(shù)分別是______,另外一邊的平方是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于P(a,b)和點(diǎn)Q(a,b′),給出如下定義:若b′=,則稱點(diǎn)Q為點(diǎn)P的限變點(diǎn).例如:點(diǎn)(2,3)的限變點(diǎn)的坐標(biāo)是(2,3),點(diǎn)(﹣2,5)的限變點(diǎn)的坐標(biāo)是(﹣2,﹣5).
(1)點(diǎn)(,1)的限變點(diǎn)的坐標(biāo)是 ;
(2)判斷點(diǎn)A(﹣2,﹣1)、B(﹣1,2)中,哪一個點(diǎn)是函數(shù)y=圖象上某一個點(diǎn)的限變點(diǎn)?并說明理由;
(3)若點(diǎn)P(a,b)在函數(shù)y=﹣x+3的圖象上,其限變點(diǎn)Q(a,b′)的縱坐標(biāo)的取值范圍是﹣6≤b′≤﹣3,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明有一個呈等腰直角三角形的積木盒,現(xiàn)在積木盒中只剩下如圖1所示的九個空格,圖2是可供選擇的A、B、C、D四塊積木.
(1)小明選擇把積木A和B放入圖3,要求積木A和B的九個小圓恰好能分別與圖3中的九個小圓重合,請在圖3中畫出他放入方式的示意圖(溫馨提醒:積木A和B的連接小圓的小線段還是要畫上哦。;
(2)現(xiàn)從A、B、C、D四塊積木中任選兩塊,請用列表法或畫樹狀圖法求恰好能全部不重疊放入的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各題中,合并同類項結(jié)果正確的是( )
A.2a2+3a2=5a2
B.2a2+3a2=6a2
C.4xy﹣3xy=1
D.2m2n﹣2mn2=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com