【題目】如圖,直徑為13的⊙E,經(jīng)過原點O,并且與x軸、y軸分別交于A、B兩點,線段OA、OB(OA>OB)的長分別是方程x2+kx+60=0的兩根.
(1)OA:OB=____;
(2)若點C在劣弧OA上,連結(jié)BC交OA于D,當△BOC∽△BDA時,點D的坐標為______.
【答案】(1)12:5;(2)(,0).
【解析】
試題解析:連接AB,
∵∠AOB=90°,
∴AB是⊙E的直徑,AB=13,
∴OA2+OB2=AB2=169.
根據(jù)根與系數(shù)的關(guān)系可得:
OA+OB=-k>0,OA×OB=60,
∴OA2+OB2=(OA+OB)2-2OAOB=k2-120=169,
∴k=-17,
原方程為x2-17x+60=0,
解得x1=5,x2=12,
∴OA=12,OB=5,
∴OA:OB=12:5.
(2)過點D作DH⊥AB于H,如圖.
∵△BOC∽△BDA,
∴∠OBC=∠DBA,
在△BOD和△BHD中,
,
∴△BOD≌△BHD,
∴BH=BO=5,DH=OD.
設(shè)OD=x,則DH=x,DA=12-x.
在Rt△DHA中,根據(jù)勾股定理可得,
x2+(13-5)2=(12-x)2,
解得x=,
∴點D的坐標為(,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)填空:如圖,我們知道,一條線段OA繞著它的一個端點O旋轉(zhuǎn)一周,另一個端點所形成的圖形叫做 ;一個矩形ABCD繞著它的邊AB旋轉(zhuǎn)一周所形成的圖形叫做 ;
(2)如圖,將一個直角三角形ABC(∠C=900)繞著它的直角邊AC旋轉(zhuǎn)一周,也能形成一個幾何圖形。
(a)在圖中畫出這個旋轉(zhuǎn)圖形的草圖,并說出它的名稱。
(b)如果ΔABC中AC=20,BC=15,把這個旋轉(zhuǎn)圖形沿著ΔABC的中位線DE且垂直于AC的方向橫截,得到一個什么樣的圖形?并請你計算所截圖形的上半部分的全面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為(4,),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).
(1)求拋物線的解析式及A,B兩點的坐標;
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,請說明理由;
(3)在以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=,PC=1,求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
解題思路是:將△BPC繞點B逆時針旋轉(zhuǎn)60°,如圖乙所示,連接PP′.
(1)△P′PB是 三角形,△PP′A是 三角形,∠BPC= °;
(2)利用△BPC可以求出△ABC的邊長為 .
如圖丙,在正方形ABCD內(nèi)有一點P,且PA=,BP=,PC=1;
(3)求∠BPC度數(shù)的大小;
(4)求正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形中, ,垂足為與的延長線相交于,且,連接;
(1)如圖,求證:四邊形是菱形;
(2)如圖,連接,若,在不添加任何輔助線的情況下,直接寫出圖中所有面積等于的面積的鈍角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求點A、B、C的坐標;
(2)點M(m,0)為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,可得矩形PQNM.如圖,點P在點Q左邊,試用含m的式子表示矩形PQNM的周長;
(3)當矩形PQNM的周長最大時,m的值是多少?并求出此時的△AEM的面積;
(4)在(3)的條件下,當矩形PMNQ的周長最大時,連接DQ,過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=2DQ,求點F的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD相交于點O,△OAB是等邊三角形.
(1)求證:ABCD為矩形;
(2)若AB=4,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】臨近期末考試,心理專家建議考生可通過以下四種方式進行考前減壓:.享受美食,.交流談心,.體育鍛煉,.欣賞藝術(shù).
(1)隨機采訪一名九年級考生,選擇其中某一種方式,他選擇“享受美食”的概率是 .
(2)同時采訪兩名九年級考生,請用畫樹狀圖或列表的方法求他們中至少有一人選擇“欣賞藝術(shù)”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,E、F 分別為線段 AB、AC 上的點(不與 A、B、C 重合)
(1)如圖 1,若 EF//BC,求證:
(2)如圖 2,若 EF 不與 BC 平行,(1)中的結(jié)論是否仍然成立?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com