已知△ABC中,∠BAC=90°, AB=AC. (1)(5分) 如圖,D為AC上任一點(diǎn),連接BD,過A點(diǎn)作BD的垂線交過C點(diǎn)與AB平行的直線CE于點(diǎn)E.求證:BD=AE.
(2)(6分) 若點(diǎn)D在AC的延長線上,如圖,其他條件同(1),請畫出此時(shí)的圖形,并猜想BD與AE是否仍然相等?說明你的理由.
【解析】(1)先證∠ABD=∠CAE,再證△ABD≌△CAE即可得出答案.
(2)根據(jù)題意畫出圖形,然后可根據(jù)△ABD≌△ACE得出結(jié)論
證明:(1)∵AB∥CE,
∴∠BAF=∠AEC,∠BAC+∠ACE=180°,
∵∠BAC=90°,
∴∠ACE=90°,
∵AF⊥BD,
∴∠ABD+∠BAF=90°,∠EAC+∠BAF=90°,
∴∠ABD=∠CAE
在△ABD和△CAE中,
AB=AC ∠BAC=∠ACE ∠AEC=∠ABD ∴△ABD≌△CAE(AAS)
∴BD=AE.
(2)BD與AE仍然相等,
證明:過點(diǎn)C作AB∥CE,過點(diǎn)A作AE⊥BD于點(diǎn)F,
∵AB∥CE,
∴∠BAF=∠AEC,∠BAC+∠ACE=180°,
∵∠BAC=90°,
∴∠ACE=90°,
,∵AF⊥BD,
∴∠ABD+∠BAF=90°,∠EAC+∠BAF=90°,
∴∠ABD=∠CAE
在△ABD和△CAE中,
AB=AC ∠BAC=∠ACE ∠AEC=∠ABD
∴△ABD≌△CAE(AAS)
∴BD=AE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com