【題目】是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀將其均分成四塊小長(zhǎng)方形,然后按圖的形狀拼成一個(gè)正方形.

(1)你認(rèn)為圖中的陰影部分的正方形的邊長(zhǎng)等于__________.

(2)請(qǐng)用兩種不同的方法求圖中陰影部分的面積.

方法1:__________ ;

方法2:__________ .

(3)觀察圖,你能寫(xiě)出代數(shù)式:(m+n)2,(m-n)2,mn之間的等量關(guān)系嗎?

_______________________ _ .

(4)根據(jù)(3)題中的等量關(guān)系,解決如下問(wèn)題:

若a+b=7,ab=5,則(a-b)2=___________________________.

【答案】(1)、mn;(2)、;;(3)、=;(4)、29.

【解析】

試題分析:(1)、小正方形的邊長(zhǎng)等于長(zhǎng)方形的長(zhǎng)與寬之差;(2)、陰影部分的面積等于小正方形的面積,也等于大正方形的面積減去四個(gè)長(zhǎng)方形的面積;(3)、根據(jù)面積相等列出等式;(4)、根據(jù)得出的等式進(jìn)行計(jì)算.

試題解析:(1)、mn

(2)、方法1: 方法2:

(3)、 =

(4)、=49-20=29

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(﹣2,0),點(diǎn)B(0,2),點(diǎn)E,點(diǎn)F分別為OA,OB的中點(diǎn).若正方形OEDF繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得正方形OE′D′F′,記旋轉(zhuǎn)角為α.當(dāng)α=90°時(shí),求AE′,BF′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正六邊形ABCDEF內(nèi)接于O,向O內(nèi)任意投點(diǎn),則所投的點(diǎn)落在正六邊形ABCDEF內(nèi)的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OABC的外接圓,AM是O的直徑,過(guò)點(diǎn)A作APAM

(1)求證:PAC=ABC

(2)連接PB與AC交于點(diǎn)D,與O交于點(diǎn)E,F(xiàn)為BD上的一點(diǎn),若M為BC的中點(diǎn),且DCF=P,求證:=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多邊形的內(nèi)角和是1260°,這個(gè)多邊形的邊數(shù)是(   )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正六邊形ABCDEF的每一個(gè)外角的度數(shù)是__________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12m,寬是4m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線的點(diǎn)C到墻面OB的水平距離為3m時(shí),到地面OA的距離為m

1)求該拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;

2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過(guò)?

3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的個(gè)數(shù)是( )

整數(shù)是指正整數(shù)和負(fù)整數(shù);任何數(shù)的絕對(duì)值都是正數(shù);零是最小的整數(shù);④一個(gè)負(fù)數(shù)的絕對(duì)值一定是正數(shù)。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,CAB=70°.在同一平面內(nèi),將ABC繞點(diǎn)A旋轉(zhuǎn)到AB′C′的位置,使得CC′AB,則BAB′=( )

A.30° B.35° C.40° D.50°

查看答案和解析>>

同步練習(xí)冊(cè)答案